
Answering Subgraph Queries over Large Graphs

Weiguo Zheng, Lei Zou �, and Dongyan Zhao

Peking University, Beijing, China
{zhengweiguo,zoulei,zdy}@icst.pku.edu.cn

Abstract. Recently, subgraph queries over large graph-structured data have at-
tracted lots of attentions. Most of the recent algorithms proposed to solve this
problem apply the structural features of graphs to construct the index, such as
path, tree and subgraph. However, there is no a solid theory foundation of which
structure is the best one to construct the index. What is more, the cost of mining
these structures is rather expensive. In this paper, we present a high performance
graph query algorithm, SMS, based on the simple yet effective neighborhood
structure. To further improve the query performance, a graph partition solution
is proposed and the efficient codes of vertices and blocks are carefully designed.
Extensive experimental studies demonstrate the effectiveness and scalability of
our algorithm in the issue of subgraph queries on large graph-structured data.

1 Introduction

In the era of Web data explosion, it is very important to organize and manage mas-
sive data efficiently. Well-established relational databases work well in the areas they
are designed for, such as Enterprise Resourse Planning (ERP) and Management in-
formation system (MIS), but they have a serious shortcoming, that is “schema before
data”. Furthermore, it is quite expensive for RDBMS-based systems to handle updates
over schemas. However, in Web data management, such as social network analysis, the
schema is always changing. In this case, graph is a good model to solve this problem,
because graph is powerful in expression with its structural features. Furthermore, also
due to its flexibility, graph provides a good solution for Web data mashup. Thus, graph
data management has attracted lots of attentions in different areas, such as bioinfor-
matics, social networks, and semantic data management. It is a key problem to develop
efficient and effective techniques to manage, process, and analyze graph data. Among
these techniques, subgraph query is an interesting, fundamental, and important task.

Recently, many techniques processing subgraph query over large graph databases
have been proposed [16,17,2,21]. There are two scenarios of subgraph queries, one of
which is searching a query graph over a large number of small graphs, and the other
one is searching a query graph over a large graph. Note that, this work focuses on the
latter scenario.

Many subgraph isomorphism algorithms have been proposed, such as Ullmann [15]
and VF2 algorithm [3]. However, these algorithms cannot work well in large graph
databases. As we know, subgraph isomorphism is a classical NP-complete problem. In

� Corresponding author.

H. Wang et al. (Eds.): WAIM 2011, LNCS 6897, pp. 390–402, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Answering Subgraph Queries over Large Graphs 391

order to improve the query performance, most of existing works adopt the “filter-and-
refine” framework. Specifically, some indexes are built in offline processing. At run
time, based on these indexes, an efficient filtering algorithm is used to reduce the search
space. Finally, subgraph isomorphism algorithm is used to find final answers.

Most index-based solutions propose to utilize some frequent structural features, such
as paths, trees or subgraphs, to construct the indexes [14,16,17,2,6,5,21]. However, this
kind of methods lose their advantages in large graphs, since frequent structural pattern
mining over a large graph is still an open question in data mining community. In order to
address this issue, some neighborhood-based solutions have been proposed. For exam-
ple, Zhao and Han propose SPath algorithm [20], which utilizes shortest paths around
the vertex as basic index units. A key problem of SPath lies in the inefficiency of offline
processing. Furthermore, it is quite expensive to perform updates over these indexes.

In this paper, for each vertex, we propose a simple yet effective strategy to encode the
neighborhood structure around the vertex. Specifically, we consider the labels and the
degrees of the neighbors. Based on the codes, we combine the filtering and verification
together to speed up query processing. Furthermore, in order to address the scalability
of our method, we propose a graph partition solution. We partition a large graph G into
n blocks Gi, i = 1, ..., n. For each block Gi, we also design a code, based on which,
many blocks can be filtered out safely. In order to find matches across multi-blocks, we
build some carefully-designed indexes.

To summarize, in this work, we make the following contributions:

1. Based on the neighborhood of one vertex, we propose a simple yet effective code
for each vertex.

2. We propose an efficient subgraph search algorithm, which combines the filtering
and refining process together.

3. In order to answer a subgraph query over a very large graph, we propose a graph
partition-based solution.

4. Extensive experiments confirm the superiority over existing algorithms.

The rest of the paper is organized as follows. Section 2 introduces the related work. Sec-
tion 3 defines the problem definition. Section 4 introduces the subgraph query algorithm
SMS. The improved algorithm SMSP based on graph partition is proposed in Section 5.
Section 6 reports the experimental results on real and synthetic datasets. Finally Section
7 gives the conclusion.

2 Related Work

There are mainly two embranchments of subgraph query. One of them is exact sub-
graph query, which means all the vertices and edges are matched exactly. The other one
is approximate subgraph query, which usually concerns the structure information and
allows some of the vertices or edges not be matched exactly[19,4,8,11]. However, we
focus on the exact subgraph query in this paper.

In the exact subgraph query, there are two categories of related techniques: non-
feature-based index and feature-based index. The algorithm Ullmann [15] to solve the
problem of subgraph isomorphism is in the first branch. However, it is very expensive

392 W. Zheng, L. Zou, and D. Zhao

when the graph is large. Some other algorithms were proposed [3,10], of which VF2
[3] is relatively efficient. The first step in VF2 algorithm is to compute the candidate set
P(s) of vertices. In this step, only the edge information is considered, thus the size of
P(s) is too large. In the verification phase, the feasibility rules are not efficient enough
to verify the candidates either. The authors of Closure-tree [7] propose pseudo subgraph
isomorphism using the strategy of checking the existence of semi-perfect matching be-
tween the query graph and database graphs. Noticed that the task of finding semi-perfect
matching is very cost. So this algorithm will not work effectively for a large graph.

Recently, many index-based subgraph query algorithms have been proposed. Most of
these algorithms utilize the paths, trees or subgraphs to construct the indexes
[18,13,22,20]. Haichuan Shang develops an algorithm QuickSI [13] to test subgraph
isomorphism. In the filtering phase, the features of prefix tree are considered to accom-
modate this algorithm. Shijie Zhang proposes the algorithm GADDI [18] based on the
idea of frequent substructures. The authors of NOVA [22] construct the indexes based
on the neighborhood label distribution of vertices. Peixiang Zhao investigates the SPath
[20] algorithm, which utilizes shortest paths around the vertex as basic index units. Due
to the complicated indexes, the index building cost of GADDI, Nova and SPath are all
very expensive.

3 Problem Definition

In this section, we formally define our problem in this paper.

Definition 1. A labeled graph G is defined as G = {V, E,
∑

V ,
∑

E , FG}, where V is
the set of vertices, E is the set of edges,

∑
V is the set of vertex labels,

∑
E is the set

of edge label, and FG is the mapping function that maps the vertices and edges to their
labels respectively.

Definition 2. A graph G = {V, E,
∑

V ,
∑

E , FG} is isomorphic to another graph
G′ = {V ′, E′,

∑′
V ,

∑′
E , F ′

G}, denoted by G ≈ G′, if and only if there exists a bi-
jection function g : V (G) → V ′(G′) s.t.

1)∀v ∈ V (G), FG(v) = F ′
G(g(v)); 2)∀v1, v2 ∈ V (G),−−→v1v2 ∈ E ⇔ −−−−−−−→

g(v1)g(v2) ∈ E′

Given two graphs Q and G, Q is subgraph isomorphic to G, denoted as Q ⊆ G, if Q is
isomorphic to at least one subgraph G′ of G, and G′ is a match of Q in G.

Definition 3. (Problem Statement) Given a large data graph G and a query graph Q,
where |V (Q)| � |V (G)|, the problem that we conduct in this paper is defined as to
find all matches of Q in G, where matches are defined in Definition 2.

For example, in Figure 1, Q is a query graph, and G is a database graph. One match of
Q in G is denoted as dotted lines in Figure 1. In this paper, we develop an algorithm
to find all the subgraph matches of Q in G. For the purposes of presentation, we only
discuss our method in undirected vertex-labeled graphs. Note that, it is very easy to
extend our methods to directed and weighted labeled graph without a loss of generality.

Answering Subgraph Queries over Large Graphs 393

1 2

3

1 2
3

3

Fig. 1. An example of matching between Q and G

4 Subgraph Search Algorithm

In this section, based on the neighborhood structure, we first introduce a simple yet
effective vertex code for each vertex. Based on the codes, we then propose a novel
subgraph isomorphism algorithm.

4.1 Vertex Codes

As we know, subgraph isomorphism is a NP-complete problem. The key problem is the
large search space. Let us recall Ullmann algorithm. Initially, a vertex v in query Q can
match to any vertex u with the same label in graph G. Based on the neighborhood’s
structure around the vertex, some vertices u can be pruned, even though they have the
same labels as v in Q. Although SPath also proposes to use shortest paths around one
vertex as basic index units [20], it is very expensive to build the index. Furthermore,
the index has to be re-built, if any update happens to graph G. Thus, in this work, we
propose to use some simple yet effective structures to encode each vertex.

Definition 4. Vertex Code. Given a vertex u in graph G, its vertex code is defined as
C(u) = [L(u), NLS(u) = {[li, (di1, ..., dim)]}], where L(u) is the label of vertex u, li
is a kind of label of neighbor vertices of u, di1, ..., dim is the degree list of u′ neighbor
vertices with label li and di1 ≥ di2 ≥ ... ≥ dim.

Definition 5. PreSequence. Given two sequences of numbers in decreasing order, S =
{s1, s2, s3, . . . sm} and T = {t1, t2, t3, . . . tn}, where si (1 ≤ i ≤ m) and tj (1 ≤ j ≤
n) are both integers. S is called a PreSequence of T if and only if 1) n ≤ m; and 2)
∀si ∈ S, |{tj |tj ≥ si}| ≥ i.

Definition 6. Subnode.Given two vertices v and u in query Q and graph G, respec-
tively. v is a subnode of u if and only if 1) L(v) = L(u); and 2) ∀ li ∈ NLS(v), ∃
lj ∈ NLS(u) and li = lj and the degree list {di1, ..., dim} is PreSecquence of the
degree list {dj1, ..., djn}.

If v is a subnode of u, we can also say u is supernode of v, which is denoted as v � u.

Based on Vertex Code, the indexes of graph G (denoted as LV G) is constructed as
follows: the id and vertex code of each vertex.

For example, in Figure 2, the index structures for G are: LV G = {[1, a, [a, (3); b, (3);
c, (4, 2)]]; [2, c, [a, (4); c, (4)]]; [3, c, [a, (4, 3); b, (3); (c, 2)]]; [4, a, [a, (4); b, (2); c, (4)]];
[5, b, [a, (4, 3)]]; [6, a, [a, (4, 3); b, (3, 2)]]; [7, b, [a, (4, 4); c, (4)]]}.

Similarly, we can also encode vertices by vertex codes into LV Q. For example,
given a query Q in Figure 2, LV Q = {[1, c, [a, (3); b, (2); c, (2)]]; [2, c, [a, (3); c, (3)]];

394 W. Zheng, L. Zou, and D. Zhao

Fig. 2. A query graph Q and a database graph G

[3, a, [b, (2); c, (3, 2)]]; [4, b, [a, (3); c, (3)]]}. Based on the indexes, we can easy find
that u1 is the supernode of v3.

Lemma 1. Given two graphs Q and G, if there is a subgraph G′ (in G) that matches
to Q, ∀ v ∈ V (Q), ∃u ∈ V (G), v � u.

Proof. Based on the problem definition, it is obviously proved.

With the vertex codes, it is easy to test whether a vertex v is a Subnode of another vertex
u. For example, u1 is the supernode of v3 but u4 and u6 not, so the candidate vertex of
v3 in G is only u1.

4.2 Framework of the Algorithm

With the proper filtering approach introduced in the former subsection, the framework
of our algorithm is presented as follows: first,encode the database graph G and query
graph Q based on 4. Then traverse each vertex v of Q in breadth first search and filter
the vertices of G to get the candidate vertex set of v. During the process of traversing
vertices in Q, the operation of verification in the depth first search is conducted. That is
also to say, the filter-and-refine is combined together, which will be presented in details
in the following subsection.

4.3 Subgraph Query Algorithm

Definition 7. Match Sequence. Given two graphs Q and G, match sequence between
Q and G is a sequence of matched vertex pairs MS(n)={(vi1, uj1), . . . , (vin , ujn)},
where ujk

(1 ≤ k ≤ n)is the vertex in G that matches with the vertex vik
in Q. If the

size of MS is equal to the size of Q, Q is a subgraph of G.

In the query Algorithm 1 , the vertex pairs of Match Sequence are stored in two vectors,
which are denoted as SMQ and SMG respectively. The first step in query process is
to select a vertex as shown in Algorithm 1. If we select a vertex whose supernode set
is least in size the outer loop decreases, especially when the size of the other candidate
sets is larger. Similarly, to put the neighbors of current vertex into the match vector
SMQ, the vertex v whose degree is least should be chosen first, and then select the
vertex whose degree is least in the rest neighbor vertices. At last, all the vertices will be
selected.

Answering Subgraph Queries over Large Graphs 395

Algorithm 1. Subgraph Match preSequency (SMS) Algorithm
Require: Input: LVG, LVQ, G and Q.

Output: Matches of Q over G
1: Select the id of 1st vertex in LVQ into SMQ, push its neighbors′ ids into the vector.
2: for each v ∈ SMQ do
3: compute the candidate vertices C(v) for v.
4: for each u ∈ C(v) do
5: quickly verify the current match.
6: if u matches v then
7: push u into SMG.
8: for each v′ ∈ neighbors of v do
9: if v′ does not exist in SMQ then

10: put v′ into SMQ.
11: SMS(LVG, LVQ, G,Q).

Definition 8. Prior Vertex. In the matching sequence, the prior vertex of v is the earli-
est selected vertex in the neighbor vertices of v.

In the matching sequence, each vertex except the first one has a prior vertex. In the
matching process, to get all the candidate vertices of v, first we find all the supernodes,
which are denoted as set S1. Then find the vertex matched with the prior vertex of v,
and get its neighbor vertices denoted as set S2. Last the candidate vertices of v is the
intersection of S1 and S2.

Noticed that no matter how effective the filtering ability is, it is unavoidable to con-
duct the verification operation. So designing an effective and efficient verification ap-
proach is rather important and necessary.

If Q is subgraph isomorphic to G, for each subgraph of Q must be subgraph isomor-
phic to the corresponding subgraph of G. This is similar to the Apriori property in the
frequent pattern mining[1]. That is also to say, If Q is subgraph isomorphic to G, there
must be a match sequence at least. For each subset vertices of the match sequence, the
vertex in Q must be subnode of the corresponding vertex in G. This has been proved in
Lemma1. However, there is another important theorem as presented in Lemma 2.

Definition 9. Sequence Number Set. Given two graphs Q and G, as to the match se-
quence MS(n), Sequence Number Set of the next vertex v to be matched is a set of
number, denoted as SNS(v) , and its size is equal to the degree of v. For each neigh-
bor v′ of the vertex v, if v′ is in the MS(n), the sequence number of v′ in the MS(n) is
pushed into SNS(v), or the value (n+j+1) is pushed into SNS(v), where j is the number
of neighbors of v that are not in MS(n) currently.

Lemma 2. In the process of finding the match sequences between Q and G, the pair of
new vertices to be matched are v and v′ in Q and G respectively. If SNS(v) � SNS(v′),
v′ does not match v in the sequence, or they will match.

Proof. If current match sequence MS(k)={ (vt, us), (vt+1, us+1) . . . (vt+k, us+k)}.
When trying to find next match pair, the next candidate vertex in Q is vk+1 , and
the next candidate vertex in G is uk+1. If SNS(vk+1) � SNS(uk+1), there must be

396 W. Zheng, L. Zou, and D. Zhao

Fig. 3. SNS of current vertices in Q and G

some numbers which are not in SNS(uk+1). Supposing the corresponding vertices are
{vm1, vm2 . . . vmp} , then the edges (vm1, vk+1), (vm2, vk+1) . . . (vmp, vk+1) cannot
be matched in G, so vk+1 is not matched with uk+1.

Lemma 3. For each pair of vertices in each subsequence of a sequence S of vertices
between Q and G, if the vertex in Q is a subnode of the vertex in G, the sequence S is
a match sequence of Q and G.

Proof. If each subsequence of S could succeed, we can assign a sequence from 1 to the
length of S, and this sequence assigned must succeed. Then Lemma3 is deduced. Since
Lemma2 could be proved, so does Lemma 3.

For example, in Figure 3 supposing that two vertices have been matched currently,
MS(2)={(v3, u1), (v2, u2)}, if the next vertex to be matched in Q is v1, a candidate
vertex of v1 in G is u3. As is shown in Figure 3, SNS(v1)={1,2,3}, SNS(u3)={1,2,3,4},
SNS(v1) is a subset of SNS(u3), so v1 can match u3 temporarily.

If all the vertices in Q are included in the MS, the match sequence is a solution. In
the match process, if the degree of a vertex is larger, the more edges will be test at a
time. That is also to say graph-at-a-time is more cost-effective than traditional edge-at-
a-time query processing.So this verification is rather efficient and effective for the good
properties.

5 Subgraph Query Based on Partition

Considering the problem of subgraph isomorphism is NP-Complete, isomorphism test
will be costly and inefficient in time and space cost if the size of database graph is very
large. However, if the size of the graph is small or the graph is sparse, isomorphism test
will be much easier.

Intuitively, we can partition the database graph into some small subgraphs. However,
there are two major challenges: what the number of the partitioned subgraphs is better
and dealing with matches crossing in multi-blocks.

5.1 Offline Processing

First, we partition the database graph into N blocks with METIS[9]. Noticed that if the
size of each block is too small, the number of subgraphs and crossing edges are both
increasing. Based on our experiments, when the size of the subgraph is 10 to 100 times

Answering Subgraph Queries over Large Graphs 397

as large as the query graph, the query performance is better. In order to improve the
query performance, we propose the block codes for each block to filter out some blocks
that do not contain any subgraph that matches the query graph Q.

Definition 10. Block Codes. GivenablockBofG, itsblockcodeisdefinedasLLB =
{l1, m1, (d1, d2, . . . dm1); . . . ; ln, mn, (d1, d2, . . . dmn)}, where l is the label, m is the
number of vertices with label l and di is the degree of ith node which has the label l.

The same code LLQ is also used for Q.

Lemma 4. Given two graphs Q and G, if Q is a subgraph of G if and only if ∀l ∈
LLQ,∃l ∈ LLG and the corresponding degree list LLQ must be the PreSequence of
that in LLG, where PreSequence if defined in Definition 5.

Proof. It is easy to be proved according to the definition of the subgraph isomorphism.

In figure 4, the database graph is partitioned into three blocks (P1, P2, P3).LLQ =
{a, 1, (2); b, 1, (2); c, 2, (3, 3)}, LLP1 = {a, 1, (3); b, 1, (3); c, 2, (4, 3); d, 1, (3)},
LLP2 = {a, 2, (3, 2); b, 1, (3); c, 1, (4); e, 1, (4)}, LLP3 = {a, 1, (4); b, 1, (2); c, 2,
(3, 2); e, 1, (3)}. To find the matches without this strategy, we have to try to traverse
every partitioned subgraph. For example, when traversing P1, one candidate match se-
quence is “u4-u3-u2”, in that case the algorithm does not return until after trying to
match the last vertex with label “c” in Q. However, if employing Lemma 4, we can
filter P2 and P3 safely. So before dropping into recursion deeply, we can conclude that
Q cannot match any subgraph in P2 and P3. Undoubtedly, this will make our algorithm
more efficient and effective.

There is another big challenge that dealing with the possible matches crossing several
blocks. It is easy to get the idea that extending every block over x hops so that every
two blocks have a overlap. However, the real database graph is dense, so the extended
blocks will be as large as the database graph due to the “Six Degrees of Separation”[12].

To reduce the crossing edges, the algorithm of “Min-Cut” is employed as mentioned
before. Noticed that after partition,if we only consider the crossing edges, the graph
will be sparse as shown in Figure 7. Thus each partition edge with two labels can be
viewed as a special “vertex”. The inverse index “LVE” similar to the previous LVG(or
LVQ) can be constructed.

Fig. 4. The partitioned graph G and the query graph Q

398 W. Zheng, L. Zou, and D. Zhao

Definition 11. Given a crossing edge “u1u2”, its crossing edge code is defined as
LVE=[(l1,l2){u1,u2,NLS(u1),NLS(u2) }],where l1 and l2 are the corresponding labels
of u1 and u2 ,NLS(u1)and NLS(u2)are the neighbor degree lists of u1 and u2 respec-
tively,which are the same as that in definition 4.

For example, the “LVE” of crossing edge “u6u11” is [(a, c){u6, u1, [b(2), c(2, 2), e(3)]
, [a(4), b(4), d(3), e(5)]}]. It is obvious that the prune ability of LVE will be much more
evident, because it stores more information. What is more, if a database graph contain
100,000 vertices,500,000 edges and 200 different labels, the size of candidate set of
each kind vertex label is 500 on average. But if we combine two vertices as a special
“vertex” and the the number of crossing edges is 300,000, the size of candidate set of
each kind “vertex”label is 7.5 on average. Undoubtedly, the search space be reduced
greatly.

5.2 Online Query Based On Partition

With the indexes constructed in former subsection,we conduct the match process in this
subsection.The framework of improved algorithm with partition is shown in
Algorithm 2.

First, we find the matches in each block, the process of which is the same as that in
SMS. What need to be noted is that the size of the “G” is much smaller relatively. So
the time consumed in this phase is far less than that in the whole database graph.

Algorithm 2. Subgraph Match preSequency Based on Partition (SMSP) Algorithm
1: For each block calls Algorithm 1.
2: for each edge e ∈ Q do
3: find the crossing edges that match e in G.
4: put the two vertices of e into SMQ.
5: call Algorithm 1.

Second, we find the possible matches through the crossing edges. In order to avoid
traversing a possible match many times, a lexicographic order should be assigned. The
match process is similar to SMS. The main difference lies in the match sequence of
Q. Here, the match spreads in two directions in the first step. For each edge e in Q,we
select a edge e′ from crossing edges which matches e and push their vertices into SMQ
and SMG respectively. And then the neighbors of vertices of e are pushed into SMQ.
The rest process is the same as SMS.

6 Experimental Evaluation

In this section, we evaluate the query performance of our algorithms SMS and SMSP
over both synthetic and real data sets, which prove that our approaches outperform some
state-of-the-art algorithms well by more than one order of magnitude.

Answering Subgraph Queries over Large Graphs 399

6.1 Experiment Preparation

The codes of GADDI[18] and Nova[22] are provided by authors. Furthermore, we im-
plemented another algorithm SPath according to [20]. In our algorithm, we use the
software metis to partition the database graph. All these algorithms compared were
implemented using standard C++. The experiments are conducted on a P4 2.0GHz ma-
chine with 2Gbytes RAM running Linux.

Synthetic Data Sets. We construct two data sets using two classical random graph
models, Erdos Renyi model and Scale-Free model. The two data sets are denoted as ER
and SF respectively. The number of vertices in ER and SF both vary from 10K to 100K.
And the number of vertex labels of all the database graphs is 250.

Real Data Sets. We use a human protein interaction network(HPRD) and a RDF
data(Yago) as the real data sets. HPRD consists of 9, 460 vertices,37, 000 edges and
307 generated vertex labels with the GO term description.Actually, Yago is a RDF
graph consists of 368, 587 vertices, 543, 815 edges and 45, 450 vertex labels, where
vertices, edges and labels corresponds to subjects(or objects), properties and the classes
of subjects(or objects) respectively. The edge labels and direction are ignored in our
experiments.

6.2 Experimental Results

In this sub-section, we compare our algorithm SMS with GADDI [18], Nova [22] and
SPath [20]. And then study the query performance of SMSP.

Experiment 1. Performance of SMS versus |V (G)|. Figure 5(a) and Figure 5(b) sum-
marize the time consumed by the four methods,where the corresponding query graph is
10-vertex graph and size of the data graph of ER and SF varies from 10k to 100k. Noted
that the query respond time of SMS is less than 1 second even though the size of G is
100k. What is more,the index construction time of our algorithm is also less than the
other three algorithms as shown in Figure 6(a) and Figure 6(b). Undoubtedly,it proves
our algorithm has a good scalability as |V (G)| increasing.

ER10K ER20K ER40K ER60K ER80K ER100K
10−2

10−1

100

101

102

103

Q
ue

ry
 R

es
po

ns
e

Ti
m

e
(in

 m
s)

|V(G)| (K)

GADDI
Nova
SPath
SMS

(a) Query Response Time (in milliseconds) over ER

Graphs

SF10K SF20K SF40K SF60K SF80K SF100K
10−1

100

101

102

103

In
de

x
C

on
st

ru
ct

io
n

Ti
m

e
(in

 s
)

|V(G)| (K)

Gaddi
Nova
SPath
SMS

(b) Query Response Time (in milliseconds) over SF Graphs

Fig. 5. Performance VS. |V (G)| in Query Response

400 W. Zheng, L. Zou, and D. Zhao

ER10K ER20K ER40K ER60K ER80K ER100K
10−1

100

101

102

103

104
In

de
x

C
on

st
ru

ct
io

n
Ti

m
e

(in
 s

)

|V(G)| (K)

GADDI
Nova
SPath
SMS

(a) Index Building Time (in seconds) over ER Graphs

SF10K SF20K SF40K SF60K SF80K SF100K
10−1

100

101

102

103

In
de

x
C

on
st

ru
ct

io
n

Ti
m

e
(in

 s
)

|V(G)| (K)

Gaddi
Nova
SPath
SMS

(b) Index Building Time (in seconds) over SF Graphs

Fig. 6. Performance VS. |V (G)| in Index Building

10 20 30 40 50 60 70 80 90 100
10−1

100

101

102

103

Q
ue

ry
 R

es
po

ns
e

Ti
m

e
(in

 m
s)

Size of Query Graph for SF100K

Nova
SPath
SMS

(a) Query Response Time (in milliseconds) Over SF100K

9 12 15 18 21 24

10−1

100

101

102

Q
ue

ry
 R

es
po

ns
e

Ti
m

e
(in

 m
s)

Size of Query Graph for HPRD

Nova
SPath
SMS

(b) Query Response Time (in milliseconds) Over HPRD

10 20 30 40 50 60
10−2

10−1

100

101

102

103

104

105

Q
ue

ry
 R

es
po

ns
e

Ti
m

e
(in

 m
s)

Size of Query Graph for Yago

Spath
SMS

(c) Query Response Time (in milliseconds)Over Yago

Fig. 7. Performance VS. |V (Q)| Over SF100K, HPRD, Yago

Experiment 2. Performance of SMS versus |V (Q)|. To further study the scalability
and efficiency of our methods,we fix the database graph to be SF100k, HPRD, Yago
respectively. And then, vary the the size of query graph. The corresponding results are
shown in Figure 7(a),Figure 7(b) and Figure 7(c).

Answering Subgraph Queries over Large Graphs 401

10 20 30 40 50 60
0

2

4

6

8

10

12

14

Q
ue

ry
 R

es
po

ns
e

Ti
m

e
(in

 m
s)

Size of Query Graph for Yago

P0
P100
P300
P500
P800
P1000
P1500
P2000
P3000

Fig. 8. Performance SMSP VS. SMS

In HPRD data set, SMS takes 0.25 seconds to construct the index.To finish the index
construction Nova and GADDI need about 20 seconds and 600 seconds respectively. In
Yago data set, SMS takes about 4.22 seconds to finish the index process, which is also
far faster than SPath.

Experiment 3. Performance of SMSP versus partition number. In this experiment, we
use the data set of Yago and vary the number of partition blockes from 100 to 3000. The
query response time is shown in Figure 8, where Pn means partition the database graph
into n parts. Specially,P0 means no partition,namely SMS.

Noted that, when the query graph is small(such as the size of Q is 10,20 or 30),
the SMS is faster than SMSP no matter how many parts the database graph partitioned
into. While when the size of the query graph is larger relatively, the superiority of SMSP
appears, but it is very difficult to determine how many blocks the database graph parti-
tioned into is best.

To sum up, it is obvious that the algorithm shows high efficiency and good scalability
in all these data sets. Generally speaking, our algorithm is orders of magnitude faster than
the compared existing three algorithms. When the query graph is larger, SMSP outper-
forms SMS well, but the optimal number of blocks needs to be studied in further step.

7 Conclusions
In this paper, we consider the query graph problem on large graph-structured data. Most
the of the recent algorithms construct the index based on the structure information of
the graph, which are expensive due to the mining of the structure feature. We carefully
design vertex code based on the information of each vertex and its neighbors. What
is more, we propose the strategy of partitioning the large graph to improve the query
performance. No matter what the index is constructed based on and how effective the
pruning method is, the efficient verification strategy is important and critical. The algo-
rithm presented in this paper is very effective and efficient both in time and memory for
its simple index.

Acknowledgments. This work was supported by NSFC under Grant No.61003009 and
RFDP under Grant No. 20100001120029.

402 W. Zheng, L. Zou, and D. Zhao

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In:
VLDB, pp. 487–499 (1994)

2. Cheng, J., Ke, Y., Ng, W., Lu, A.: fg-index: Towards verification-free query processing on
graph databases. In: SIGMOD (2007)

3. Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: A (sub)graph isomorphism algorithm for
matching large graphs. IEEE Trans. Pattern Anal. Mach. Intell. 26(10), 1367–1372 (2004)

4. Dost, B., Shlomi, T., Gupta, N., Ruppin, E., Bafna, V., Sharan, R.: Qnet: A tool for querying
protein interaction networks. In: Speed, T., Huang, H. (eds.) RECOMB 2007. LNCS (LNBI),
vol. 4453, pp. 1–15. Springer, Heidelberg (2007)

5. Williams, J.H.D.W., Wang, W.: Graph database indexing using structured graph decomposi-
tion. In: ICDE (2007)

6. Jiang, P.Y.H., Wang, H., Zhou, S.: Gstring: A novel approach for efficient search in graph
databases. In: ICDE (2007)

7. He, H., Singh, A.K.: Closure-tree: An index structure for graph queries. In: ICDE (2006)
8. Jiang, H., Wang, H., Yu, P.S., Zhou, S.: Gstring: A novel approach for efficient search in

graph databases. In: ICDE (2007)
9. Karypis, G., Kumar, V.: Analysis of multilevel graph partitioning. In: SC (1995)

10. Liu, J., Lee, Y.T.: A graph-based method for face identification from a single 2d line drawing.
IEEE Trans. Pattern Anal. Mach. Intell. 23(10) (2001)

11. Mandreoli, F., Martoglia, R., Villani, G., Penzo, W.: Flexible query answering on graph-
modeled data. In: EDBT, pp. 216–227 (2009)

12. Milgram, S.: The small-world problem. In: PT, vol. 1, pp. 61–67 (1967)
13. Shang, H., Zhang, Y., Lin, X., Yu, J.X.: Taming verification hardness: an efficient algorithm

for testing subgraph isomorphism. PVLDB 1(1) (2008)
14. Shasha, D., Wang, J.T.-L., Giugno, R.: Algorithmics and applications of tree and graph

searching. In: PODS (2002)
15. Ullmann, J.R.: An algorithm for subgraph isomorphism. J. ACM 23(1) (1976)
16. Yan, X., Yu, P.S., Han, J.: Graph indexing: A frequent structure-based approach. In:

SIGMOD (2004)
17. Zhang, S., Hu, M., Yang, J.: Treepi: A novel graph indexing method. In: ICDE (2007)
18. Zhang, S., Li, S., Yang, J.: Gaddi: distance index based subgraph matching in biological

networks. In: EDBT, pp. 192–203 (2009)
19. Zhang, S., Yang, J., Jin, W.: Sapper: Subgraph indexing and approximate matching in large

graphs. PVLDB 3(1), 1185–1194 (2010)
20. Zhao, P., Han, J.: On graph query optimization in large networks. In: VLDB (2010)
21. Zhao, P., Yu, J.X., Yu, P.S.: Graph indexing: Tree + delta >= graph. In: VLDB (2007)
22. Zhu, K., Zhang, Y., Lin, X., Zhu, G., Wang, W.: Nova: A novel and efficient framework for

finding subgraph isomorphism mappings in large graphs. In: Kitagawa, H., Ishikawa, Y., Li,
Q., Watanabe, C. (eds.) DASFAA 2010. LNCS, vol. 5981, pp. 140–154. Springer, Heidelberg
(2010)

