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ABSTRACT
A challenging task in the natural language question answer-
ing (Q/A for short) over RDF knowledge graph is how to
bridge the gap between unstructured natural language ques-
tions (NLQ) and graph-structured RDF data (G). One of
the effective tools is the “template”, which is often used in
many existing RDF Q/A systems. However, few of them
study how to generate templates automatically. To the best
of our knowledge, we are the first to propose a join approach
for template generation. Given a workload D of SPARQL
queries and a set N of natural language questions, the goal is
to find some pairs 〈q, n〉, for q ∈ D∧n ∈ N , where SPARQL
query q is the best match for natural language question n.
These pairs provide promising hints for automatic template
generation. Due to the ambiguity of the natural languages,
we model the problem above as an uncertain graph join task.
We propose several structural and probability pruning tech-
niques to speed up joining. Extensive experiments over real
RDF Q/A benchmark datasets confirm both the effective-
ness and efficiency of our approach.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
RDF, Graph Database, Question Answering

1. INTRODUCTION
Recently, knowledge graphs have attracted lots of atten-

tions in both academia and industry. As Resource Descrip-
tion Framework (RDF) is de facto standard of a knowledge
graph, we focus on RDF repository in this paper. A key
issue is how to access knowledge graphs and quickly obtain
the desired information. Although SPARQL is a structural
query language over RDF graphs, it is impractical for non-
professional users to query RDF graphs using SPARQL, be-
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cause of the complexity of the SPARQL syntax and RDF
schema. We illustrate a SPARQL query example over DB-
pedia as follows.

SELECT ? person WHERE {
? person rd f : type Ar t i s t .
? person graduatedFrom Harvard Univers i ty .}

1.1 Motivation
To hide the complexity of SPARQL syntax, RDF ques-

tion/answering (Q/A) systems provide an easy-to-use inter-
face for users, which has attracted extensive attention in
both NLP (natural language processing) [19, 23, 20] and
DB (database) communities [24, 33]. A challenging task
is how to translate natural language questions (NLQ) into
structural queries, such as SPARQL, over a large knowledge
graph G. One of the effective tools is the “template”, which
is used in many existing RDF Q/A systems [19, 20].
A typical system is EVI (http://www.evi.com/, formally

TrueKnowledge), which logged over one million users within
four months of launch in January 2012. EVI was acquired
by Amazon in October 2012, and is now part of the Amazon
group of companies. EVI aims to directly answer question-
s posed in plain English text over knowledge base. It em-
ploys a template-based approach to answer natural language
questions, where a template describes how to turn a class of
natural language questions into correct structural queries.
However, EVI has to manually define the translation tem-
plates [19].
It is clear that the quality of templates determines the

answer quality. The challenge is how to generate a large
number of high quality templates automatically. Few previ-
ous works study this issue but all have to manually define
the templates [19, 20]. Obviously, it is expensive to manu-
ally define these templates, especially for open-domain Q/A
systems over large-scale RDF knowledge graphs. In this pa-
per, we study how to generate templates automatically.
Figure 1 presents the framework for RDF Q/A using tem-

plates. It consists of two tasks: how to generate templates
and how to use these templates in RDF Q/A.
To address the first issue (the focus of this paper), we pro-

pose a query workload-based approach for automatic tem-
plate generation. Specifically, the inputs for the template
generation task are two query workloads, as shown in Fig-
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Figure 1: Framework for Template-based RDF Q/A

ure 1. One is a set D of SPARQL queries on the RDF
repository (such as DBpedia workload1). The other one is a
set N of natural language questions, which can be collected
from some community-driven question-and-answer (Q&A)
sites (such as Yahoo Answers) or search engine query work-
load (such as WebQuestions2). The whole process is done
in three steps as follows.
Step 1. Uncertain Graph Generation. According to

the method in [33], natural language questions can be inter-
preted into semantic query graphs. Due to the ambiguity
of the interpretation, we model the semantic query graph
as an uncertain graph, i.e, each vertex/edge has multiple
possible labels with different probabilities. Here, labels are
uncertain due to semantic ambiguity. For example, let us
consider the question “which actor from USA is married to
Michael Jordan born in a city of NY” in Figure 2. There are
three persons named“Michael Jordan” in the DBpedia RDF
graph, i.e., an NBA star, a professor, and an actor, each of
which is associated with a probability. “NY” also has two
possible mappings, i.e., state and city. Therefore, we can
obtain an uncertain graph containing nodes with multiple
labels, each associated with a probability.
Step 2. Finding Similar Graph Pairs. The goal

is to find some pairs 〈q, g〉, for q ∈ D ∧ g ∈ U , where D
corresponds to the SPARQL queries and U are the uncertain
graphs derived from natural language questions.3 Here, we
utilize graph edit distance, which is widely used to measure
graph similarity, to compute the similarity between q and g.

Step 3. Generating Templates with Similar Graph
Pairs. Given a returned pair 〈q, g〉, based on the mapping
between q and g (the mapping is found when computing
graph edit distance at Step 2), we can build the templates.
In order to generate templates, the key problem is how

to find the similar graph pairs efficiently (i.e. Step 2). This
is the focus of this paper. We propose a novel approach,
i.e., Similarity Join over uncertain graphs, denoted as SimJ
(formally defined in Def. 7). Specifically, we propose a series
of effective bounds to improve the performance.
Given the templates generated, a natural language ques-

tion is translated into a SPARQL query using the templates
generated in the first task. Then, the SPARQL query is
searched over the knowledge graphs. The existing systems,
such as Jena [2], RDF-3x [15], Virtuoso4 and gStore [34],
can be utilized to complete the search.

1aksw.org/Projects/DBPSB.html
2A natural language question log, the website is www-
nlp.stanford.edu/software/sempre/
3We focus on the basic graph patterns of OPT-free SPARQL
queries and do not handle other questions.
4http://virtuoso.openlinksw.com/

1.2 Challenges and Our Contributions
Challenge 1: Effectiveness. Since the templates are

built based on the returned graph pairs, we need to guaran-
tee that the returned pairs 〈q, n〉 are similar to each other.
In our method, we represent the natural language question
n as an uncertain graph g, due to the ambiguity of nat-
ural language phrases. To tackle this challenge, we pro-
pose a notion, called the similarity probability, SimPτ (q, g),
to measure the probability that (uncertain) graph g and
q are similar under graph edit distance constraints, which
will be formally defined in Def. 6. Our experiments on DB-
pedia SPARQL query workload and WebQuestions natural
language question workload generate more than 8,000 tem-
plates with precision 86.54%. More experimental results on
other real datasets are reported in Section 7.
Challenge 2: Efficiency . Another critical issue is re-

lated to efficient SimJ processing. To our best knowledge,
no prior works studied this SimJ problem in the context of
uncertain graphs. One straightforward method to solve the
SimJ problem is to employ the possible world semantics [18,
3] to uncertain graphs, where each possible world is a mate-
rialized instance of uncertain graphs. However, since there
are an exponential number of possible worlds, it is rather in-
efficient to materialize all possible worlds and perform graph
similarity join on them. Therefore, efficient computations of
SimJ answers are challenging and non-trivial.
There are several existing lower bounds for graph edit

distances in the literature, such as c-star in [29], k-Adjacent
Tree in [21], paths in [31], and Pars in [30]. However, these
bounds are based on the deterministic vertex/edge labels. If
we utilize them in uncertain graphs, there are two extreme
solutions. One is to enumerate all possible worlds of an un-
certain graph and compute lower bounds for each possible
world. The other one is to ignore all vertex/edge labels and
only consider structures of graphs. Obviously, the former is
not efficient due to an exponential number of possible worlds;
while the latter’s pruning power is low. It is not straight-
forward to revise the existing lower bounds to provide both
efficient and effective pruning in uncertain graphs.
We derive a novel edit distance lower bound (called CSS-

based lower bound) that utilizes the relationship between
graph edit distance (GED) and common structural subgraph
(CSS) in the uncertain graph context. An advantage of
CSS-based bound is that there is a uniform CSS-based low-
er bound between q and all possible worlds of uncertain
graph g (see Theorem 3). In other words, we do not have
to enumerate all possible worlds of g. Our lower bound con-
siders structure and uncertainty together instead of using
them separately. Compared with existing lower bounds, our
bound is tighter, and can thus achieve higher pruning power.
Applying the relationship between GED and CSS, we also

design an upper bound for similarity probability between q
and g. Section 5 discusses more details about that.
To summarize, we make the following contributions.

• We propose a graph similarity join (SimJ) approach
to generate SPARQL query templates for RDF Q/A
automatically. Due to the inherent ambiguity of the
natural language phrases, we study SimJ in the context
of uncertain graphs.

• None of existing lower bounds of GED can be applied
in SimJ over uncertain graphs. We propose a novel
lower bound that is independent on the possible worlds
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of a uncertain graph, which is based on the relationship
between GED and common structural subgraphs.

• We devise an upper bound for similarity probability
between q and g to prune unpromising candidates.

• To optimize query performance, we further propose
a cost-based technique. That is, dividing uncertain
graphs into fine-grained groups so as to attain higher
pruning power.

• We conduct extensive experiments over real (including
QALD-3 benchmark) datasets to confirm the effective-
ness and efficiency of our proposed approach. The pre-
cisions on QALD-3 andWebQuestions datasets achieve
97.67% and 86.54%, respectively.

2. OVERVIEW AND RUNNING EXAMPLE

2.1 Template Generation
As mentioned in Section 1, there are three steps to build

templates. We illustrate the detailed steps.

Step 1: Uncertain Graph Generation. There are two
phases, i.e., generating semantic query graphs and assigning
uncertain labels, in order to generate uncertain graphs for
natural language questions (NLQ).

Generating semantic query graphs. Consider each question
n in the NLQ workload. n is translated into a semantic
query graph (Def. 1) using the approach in [33]. A semantic
query graph is a collection of semantic relations. A semantic
relation is a triple 〈rel, arg1, arg2〉, where rel is a relation
phrase, arg1 and arg2 are the two argument phrases.

Definition 1. (Semantic Query Graph [33]). A se-
mantic query graph is denoted as QS , in which each vertex
vi is associated with an argument and each edge vivj is as-
sociated with a relation phrase, 1 ≤ i, j ≤ |V (QS)|.
Let us consider a natural language question “Which actor

from USA is married to Michael Jordan born in city of NY ?”
in Figure 2. We can extract four semantic relations from the
question, i.e., 〈“from”, “which actor”, “USA”〉, 〈“be married
to”, “which actor”, “Michael Jordan” 〉, 〈“born in”, “Michael
Jordan”, “city”〉, 〈“located in”, “city”, “NY”〉, each of which
is represented as an edge in the semantic query graph QS .
Two edges share one common vertex if the corresponding
relations share one common argument in QS .

Assigning Uncertain Vertex Labels. The uncertain labels of

QS is from the ambiguity of natural language phrases. Each
vertex in QS is an argument arg, which is a natural language
phrase, such as “Michael Jordan” and“NY”. Applying entity
linking techniques [4], an argument arg (i.e., a vertex) in QS

may be linked to multiple entities associated with different
existence confidences. We use the corresponding type of en-
tities to denote the vertex label. For example, “Michael Jor-
dan”inQS may correspond to three different persons, i.e., an
NBA player, a professor and an actor. Therefore, we replace
“Michael Jordan” in QS (i.e., vertex v2) with three possible
classes, i.e., 〈NBA plaryer〉, 〈Professor〉 and 〈Actor〉, each of
which is associated with an existence confidence. Many enti-
ty linking algorithms can provide the confidence probability,
such as [4]. Furthermore, all variable vertices are assigned
the same label (a wildcard label), i.e., all the labels starting
with “?” can match any vertex label.

Which acor

Michael Jordan

city

from be married to born in located in

<United_States>,1.0

<Country>
<type>

<birthPlace>
?x, 1.0

<Actor>
<type>

<Spouse>
<Michael_Jordan>,0.6

<NBA_Player>

<Michael_Jordan>

<Professor>,0.3

?x,1.0

<City>
<type>

<New_York>, 0.7

<State>

<New_York_City>,0.3

<City>

<type>

<Michael_Jordan>

<Actor>,0.1

?b

?x

?a

?c

?d

<Spouse> <birthPlace> <locatedIn>

<Country>,1.0

<type>

<Actor>,1.0
<type>

<NBA_Player>,0.6
<Professor>,0.3
<Actor>,0.1

<City>,1.0

<type>

<type>
<State>,0.7
<City>,0.3

<type>

<birthPlace>,1.0
<locatedIn>

(a) Semantic Query Graph

(b) Uncertain Graph

<birthPlace>

<type>

<type>

<type>

<type>

USA

Which actor from USA is married to Michael Jordan born in a city of NY?

NY

v10

v9

v7

v8

v1

v2

v3
v6

v4

v5

Figure 2: Uncertain graph generation

Assigning Uncertain Edge Labels. Similarly, one relation rel

in QS may correspond to multiple predicates [33]. Zou et
al. proposed a graph mining-based relation paraphrasing
algorithm [33]. Thus, an edge in QS may also have mul-
tiple labels, each of which is a predicate associated with a
confidence probability.
Step 2: Finding Similar Graph Pairs. Let U denote all
uncertain graphs that are generated from natural language
question (NLQ) workload in the first step. It is straight-
forward to represent each SPARQL query (in the SPARQL
workload) as a certain graph q, all of which are collected
to form a certain graph dataset D. As shown in Figure 3,
our goal of this step is to find similar graph pairs 〈q, g〉,
where q ∈ D and g ∈ U are similar to each other with high
probability in the uncertain model.
We use minimum graph edit distance (GED for short), a

widely used error-tolerant measure, to evaluate the graph
similarity. Finding similar graph pairs by joining D with U
is challenging, since computing GED is an NP-hard problem
[29] and an uncertain graph g ∈ U has an exponential num-
ber of possible worlds. The existing lower bounds of GED
cannot be used directly unless that we materialize all possi-
ble worlds or ignore all vertex/edge labels of g, as these lower
bounds are designed for certain graphs. To improve the per-
formance, a careful-designed lower bound for a certain graph
q (derived from a SPARQL query) and an uncertain graph
g (derived from a natural language question) is desirable.
In this paper, we propose a common structural subgraph

(CSS for short)-based lower bound, which avoids enumerat-
ing possible worlds of g and also considering the vertex/edge
labels. The technical details are given in Sections 3 to 6. In
the running example, we find two similar graph pairs 〈g1, q2〉
and 〈g2, q1〉. Note that the similar graph pair does not nec-
essarily mean that the two queries (such as g1 and q2) ask
for the same question, but they potentially generate a good
template (see the next step) based on the matching between
g1 and q2 under the graph edit distance constraint.

Step 3: Generating Templates with Similar Graph
Pairs. Assume that we have obtained the similar graph
pairs (such as 〈g1, q2〉 and 〈g2, q1〉), the next step is to build
the templates automatically. We illustrate the detailed pro-
cess using the running example. Consider the graph pair
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〈g2, q1〉 in Figure 3, where g2 corresponds to the second ques-
tion “Which politician graduated from CIT?”.
Figure 4(b) gives the uncertain graph g2 that is generated

based on the semantic query graph as shown in Figure 4(a).
In computing graph edit distance, we obtain the mapping
between the uncertain graph g2 and SPARQL query q1.
The dashed lines in Figure 4(b) and (c) illustrate the map-
pings between g2 and q1, such as 〈politician ↔ Artist〉,
〈CIT ↔ Harvard University〉. It also shows the mappings
between phrases in natural language questions and the en-
tities/classes in SPARQL queries. We replace these specific
entities/classes as slots and also keep the mappings, which
lead to some templates, as shown in Figure 4(d).

2.2 Q/A with Templates
Given a new natural language question n, if a template t

can match the question n, we translate n into a SPARQL
query using the template. Then, any SPARQL query engine
can be used to answer the SPARQL query. There are two
main steps: finding a template matching the question, slot
filling, and entity linking.
Finding a template matching the question and slot

filling. Given a natural language question, we first find
which natural language template can match the question.
Then, based on the match, we can find the mapping between
the phrases (in natural language question) and the slots (in
templates). Here we propose a syntactic dependency tree
based alignment for the slot filling task.
Syntactic dependency tree based alignment. First, by us-

ing the NLP (Natural Language Processing) parsers, e.g.,
Stanford Parser [13], the natural language question and the
natural language part of templates are parsed into syntac-
tic dependency trees, respectively. Many tree edit distance
(TED)-based approaches have been proposed to find the
alignment between two dependency trees in NLP literature,
such as [6, 9, 26]. Based on these existing methods, we try to
find a template’s dependency tree that best aligns with the
dependency tree of the natural language question sentence
(i.e., the minimum tree edit distance). Once the alignment
is found, it is straightforward to fill the slot with the corre-
sponding phrases in the natural language question sentences.
We give an example to illustrate the whole process.

Example 1. Given a natural language question “Which
physicist graduated from CMU?”and a natural language part
of a query template “Which 〈 〉 graduated from 〈 〉?”, they

SPARQL Query Workload

1. Which actor from USA is married to
Michael Jordan born in a city of NY?

2. Which politician graduated from CIT?

1. SELECT ?person WHERE
{?person type Artist
?person graduatedFrom

Harvard_University}
2. SELECT ?person1 WHERE
{?person1 type Actor
?person1 birthPlace United_States
?person2 spouse ?person1
?person2 type NBA_star
?person2 birthPlace New_York_City}

Natural Language Question
(NLQ) Workload

(“NBA star”, 0.6)

“Actor”

(“Professor”, 0.3)
(“Actor”, 0.1)v1 v2

v3

v7v8 v9
spouse

?x

“Country”
birthPlacetype

type birthPlace (“State”,0.7)
(“City”,0.3)

?c

“Artist”
“University”typeu1

u2
u4

?x
graduatedFrom

...

“Politician”
typev1
v2

v4
?x
graduatedFrom

g1

g2

q1

q2
......

g1
g2

q2
q1

Uncertain Graph
Generation

(“University”,0.8)
(“Company”,0.2)

?a
type

type

v4
v10 type

“Actor”
“Country”

spouse

type

“City”

u1 u2 u3

u5
u4

u8
?x

birthPlace

birthPlace
?a

“NBA star”

type

type

type
?av3

?b

typeu3 ?a

?b

?c

u6

u7

type “City”

locatedIn
v6

v5

?d

...

Figure 3: Finding Similar Graph Pairs

Which politician
graduated from

?x, 1.0

<Politician>
<type>

<California Institute of
Technology>, 0.8

<University>
<CIT Group>,0.2

<Company>

<type>

?x

CIT

<graduated
From>

<Politician>,1.0

<type> <University>,0.8
<Company>,0.2

<type>

<graduatedFrom>

(a) Semantic Query
Graph

(b) Uncertain Graph

<type>

which politician graduated from CIT?

CIT

v1
v2

v3
v4

?x

Harvad_Univeristy

<graduatedFrom>

<Artist>

<type>

<University>

<type>

(c) SPAQRL

u1

u2

u3

u4

which <___> graduated from <___>?
SELECT ?person WHERE
{?person type ____
?person graduatedFrom ____ }

(d) Template

q1g2

Figure 4: Template Generation.

are parsed into two syntactic dependency trees as shown in
Figure 5. By aligning these two syntactic dependency trees,
we can fill the slots according to the mapping.

nsubj

det

Which physicist graduated from CMU? Which <___> graduated from <___>?

Which

physicist

graduated

from

CMU

pobj

prep nsubj

det

Which

<___>

graduated

from

<___>

pobj

prep

Figure 5: Syntactic dependency graph alignment

Entity Linking. Obtaining the mapping between enti-
ties and slots, we need to find the entities (in the underlying
knowledge graph) that correspond to phrases filled at the s-
lot. Actually, this is a classical entity linking problem, which
has been extensively studied [4, 16, 32]. When it is done,
we have obtained a complete SPARQL statement.

3. FINDING SIMILAR GRAPH PAIRS
We have outlined the whole process of our solution. As

mentioned earlier, a challenging task is Step 2 of the tem-
plate generation, i.e., how to find similar graph pairs from
an uncertain graph set U (derived from the NLQ workload)
and a certain graph set D (derived from the SPARQL query
workload). We model this task as a graph similarity join
problem. From this section, we focus on finding similar
graph problem. In this section, we first give some prelim-
inary knowledge in Section 3.1 and then formalize finding
similar graph pair problem (denoted as SimJ) in Section 3.2
and discuss the steps of computing SimJ problem in Section
3.3. Table 1 lists the major notations in this paper.

Table 1: Notations and Descriptions
Notation Description

D certain graphs corresponding to SPARQL queries
U uncertain graphs derived from language questions
q a (certain) query graph, q ∈ D
g an uncertain graph, g ∈ U
pw(g) or gc possible world of uncertain graph g
Pr{pw(g)} the appearance probability of pw(g)
τ user-specified threshold of GED
α user-specified threshold of similarity probability
ged(·, ·) the GED between two (un)certain graphs
SimPτ (q, g) the similarity probability between q and g
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Figure 6: Possible worlds of the uncertain graph g1

3.1 Preliminary
In order to handle the uncertainty in the semantic query

graphQS , we resort to the classical uncertain model—possible
world [3]—in uncertain graphs (Section 3.1.1). We use a
popular graph similarity measure—minimum graph edit dis-
tance (GED)—to evaluate the graph similarity (Section 3.1.2).

3.1.1 Uncertain Graph Model
Definition 2. (Uncertain Graph Model) An uncer-

tain graph g is defined as a five-tuple g = {V (g), E(g),
FL(g), ΣV (g), ΣE(g)}, where V (g) is a set of vertices, E(g)
is a set of edges, FL(g) is a mapping function: V (g)×V (g) →
E(g), that maps from vertices to edges, ΣV (g) is an uncer-
tain vertex label set which contains possible labels, l(v), of
vertex v ∈ V (g) with existence probability l(v).p ∈ (0, 1],
and ΣE(g) is an edge label set.

Def. 2 provides an uncertain graph model. Each vertex v
in uncertain graphs is assigned with one or multiple mutu-
ally exclusive labels l(v), each with an existence probability
l(v).p, where

∑
∀l(v) l(v).p ≤ 1. In this work, we use the

existing entity linking technique [4] to assign the probabil-
ity l(v).p. In fact, a certain graph, gc, is a special case of
the uncertain graph g, where each vertex v has only one de-
terministic label l(v) with existence probability l(v).p = 1.
Note that for ease of presentation, we do not discuss the edge
label uncertainty in finding similar graph pair (i.e., SimJ)
problem, although it is straightforward to handle the gener-
al case. For example, we can introduce fictitious vertices to
represent (uncertain) edges and assigning uncertain labels
of edges to these new vertices.
In order to model the uncertain graph, we consider the

well-defined possible world semantics [3] as follows.

Definition 3. (Possible Worlds of an Uncertain Gr-
aph) Let PW (g) denote a set of all possible worlds in un-
certain graph g. A possible world, pw(g) ∈ PW (g), of an
uncertain graph g is a deterministic graph instance, mate-
rialized from g, in which each vertex v is assigned with a
certain label l(v). Each possible world pw(g) has an appear-
ance probability Pr{pw(g)} =

∏
∀v∈pw(g) l(v).p.

In Def. 3, each possible world is a materialized instance
of uncertain graph g, which corresponds to one label assign-
ment in vertices of g. Thus, the probability that a possible
world appears in the real world is given by multiplying ex-
istence probabilities of vertex labels.

Example 2. Due to the space limit, Figure 6 only shows
an example of 3 possible worlds for uncertain graph g1 in
Figure 3. For simplicity, we use the acronym of each original
label to denote this label, e.g., “NBA star”(NS), “State”(S),
“type”(t). The existence probability of possible world pw1(g1),
Pr{pw1(g1)}, can be given by multiplying existence proba-
bilities of vertex labels in pw1(g1), that is, Pr{pw1(g1)} =∏10

i=1 l(vi).p = 0.6×1×1×1×1×0.7×1×1×1×1 = 0.42.

To keep our notations simple, we will use pw(g) and gc in-
terchangeably to denote either a possible world of uncertain
graph g or a certain graph, when there is no ambiguity.

pw1(g1)

S

bt
sNS v2

?xA Ct
b

v1

v8
v7 v9

v3
v4

?c t

v10t
?b

bt

s
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Figure 7: The CSS of q2 and pw1(g1)

3.1.2 Graph Edit Distance
We use minimum graph edit distance [31], a widely used

error-tolerant measure, to compute graph similarity.
Graph Edit Distance Between Certain Graphs. There
are six primitive edit operations [29] on a certain graph gc:

• insert/delete an isolated vertex with label;

• insert/delete an edge between two vertices; and

• substitute a (or an) vertex/edge label.
Given two certain graphs gc1 and gc2, there exist many se-

quences of primitive edit operations to transform gc1 to gc2.
However, among them, the sequence with the shortest length
is called the minimum graph edit distance (GED for short)
[8] (i.e., dissimilarity) between two graphs. Computing GED
between two certain graphs is NP-hard [29]. In the litera-
ture, previous works usually focus on its efficient computa-
tion [17, 31]. The most widely used approach is based on
the A∗ algorithm incorporating some heuristics [17].

3.1.3 Graph Edit Distance VS. Common Structural
Subgraph

In this section, we presentation the relationship between
graph edit distance and common structural subgraph (CSS)
[1], which is used to design our bounds.

Definition 4. (Structurally Subgraph Isomorphism [1]).
Given two certain graphs gc1 and gc2, g

c
1 is structurally sub-

graph isomorphic to gc2 if and only if there exists a bijection
f : V (gc1) → V (gc2), s.t., 1) ∀ v ∈ V (gc1), f(v) ∈ V (gc2); 2)

∀v1, v2 ∈ V (gc1),
−−→v1v2 ∈ E(gc1) ⇔

−−−−−−−→
f(v1)f(v2) ∈ E(gc2).

Note that, “structurally subgraph isomorphism” in Def. 4
does not consider the constraint of vertex/edge labels.

Definition 5. (Common Structural Subgraph [1], CSS)
Given two certain graphs q and gc, a graph s is a common
structural subgraph (CSS) of q and gc, if s is structurally
subgraph isomorphic to both q and gc, respectively.

For example, the graph s is a CSS of graph q2 and the
possible world pw1(g1) in Figure 7. In this paper, we assume
that the cost of each primitive edit operation is 1.

Lemma 1. (Graph Edit Distance VS. CSS [1]) Given t-
wo certain graphs, q and gc, s is a CSS of q and gc. The
following equation about ged(q, gc) holds.

ged(q, gc)

=min
∀s

{(|V (q)|+ |E(q)|)− (|V (s)|+ |E(s)|) (Part 1)

+(|V (gc)|+ |E(gc)|)− (|V (s)|+ |E(s)|) (Part 2)

+(|Vs|+ |Es|)} (Part 3)

= |V (q)|+ |E(q)|+ |V (gc)|+ |E(gc)| − F (q, gc) (1)

where Vs and Es are subsets of vertices and edges in CSS s,
respectively, whose labels need to be substituted, and we have

F (q, gc) = max
∀s

{2 · (|V (s)|+ |E(s)|)− (|Vs|+ |Es|)}. (2)
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Lemma 1 provides a formula of calculating GED through
CSS. The intuition is as follows. Part 1 in Eq. (1) is the
cost of deleting those vertices/edges in q that do not belong
to CSS s. Part 2 in Eq. (1) is the cost of inserting those
vertices/edges in gc that do not belong to CSS s. Part 3 in
Eq. (1) is the cost of substituting some vertex/edge labels
in CSS s. Since we may have multiple CSSs between q and
gc, the graph edit distance ged(q, gc) corresponds to a CSS
that minimizes Eq. (1). According to Lemma 1, in order to
compute the lower bound of ged(q, gc), we need to find the
upper bound of F (q, gc) in Eq. (2).
Remarks. The work in [1] only presents the relationship

between GED and CSS. As one of our technical contribu-
tions, we are the first to utilize the relationship to derive a
novel lower bound so as to reduce the search space. Further-
more, we also extend the bound to handle uncertain graphs.

3.2 Finding Similar Graph Pairs: SimJ
As mentioned earlier, we obtain two graph datasets before

the template generation. One is an uncertain graph dataset
U derived from natural language questions, while the other
one is a certain graph dataset D that collects all SPARQL
query graphs in the workload. To provide promising hints
for generating templates, we aim to find similar graph pairs
〈q, g〉, where q ∈ D and g ∈ U . Since each graph g ∈ U
is uncertain, we need to consider the graph similarity mea-
sure in the uncertain graph model. Therefore, we propose a
GED-based similarity probability as follows.

Definition 6. (Similarity Probability) Given a determin-
istic graph q, an uncertain graph g, and a graph edit distance
threshold τ , we define the similarity probability, SimPτ (q, g),
between q and g as:

SimPτ (q, g) =
∑

pw(g)∈PW (g)

Pr{pw(g)|ged(q, pw(g)) ≤ τ} (3)

Formally, finding similar graph pairs by joining a deter-
ministic graphs D and a set of uncertain graphs U (SimJ for
short) is formulated as follows:

Definition 7. (Finding Similar Graph Pairs) Given
a set of deterministic graphs D (derived from the SPARQL
query workload), a set of uncertain graphs U (derived from
natural language question workload), a graph edit distance
threshold τ , and a similarity probability threshold α ∈ (0, 1],
a SimJ query returns the graph pairs 〈q, g〉 (q ∈ D and g ∈
U) with SimPτ (q, g) ≥ α, where the similarity probability
SimPτ (q, g) is given by Eq. (3).

Intuitively, in Def. 7, the SimJ query retrieves those graph
pairs 〈q, g〉 such that g is within τ graph edit distance from
q with high confidence.

Example 3. We consider two graphs q2 and g1 in Fig-
ure 3. Let the GED threshold be τ = 4. We add up the
appearance probabilities of the possible worlds (pw1(g1) and
pw2(g3)) whose graph edit distances to q1 are not larger than
τ , that is, SimPτ (q2, g1) = 0.42 + 0.18 = 0.6.

A straightforward solution to the SimJ problem is: per-
forming a nested loop join algorithm over graph sets U and
D. The graph pairs whose similarity probabilities are no less
than the threshold are returned as final results.
Clearly, it is an inefficient solution since uncertain graphs

may have an exponential number of possible worlds. Fur-
thermore, it involves the time-consuming computation of
GED. Therefore, we need to design effective and efficient
approaches, which is challenging and non-trivial.

3.3 Framework for Finding Similar Graph Pairs
We propose a filtering-and-refinement framework for pro-

cessing the SimJ problem efficiently.
Pruning Phase. We first prune the search space to avoid
the expensive computation of SimPτ (q, g) by two techniques.

1) Structural Pruning : Utilizing the CSS, we design a
tighter lower bound for GED between graphs q and g (Sec-
tion 4). If the lower bound is larger than the GED threshold
τ , the graph pair 〈q, g〉 can be filtered out.

2) Probabilistic Pruning : We also deduce an upper bound
for the similarity probability SimPτ (q, g) (Section 5). We
can prune the candidate graph pair whose upper bound is
less than the similarity probability threshold α.
Refinement Phase. For those remaining uncertain graph
candidates that cannot be pruned, we compute their exact
similarity probabilities, and return actual SimJ answers.

4. COMMON STRUCTURAL SUBGRAPH-
BASED PRUNING

We present a structural pruning strategy, namely CSS
(Common Structural Subgraph)-based pruning. It prunes
graph pairs that are definitely not similar to each other.
Pruning Heuristics. The function SimPτ (q, g) (as giv-
en in Eq. (3)) sums up probabilities of all possible worlds,
pw(g), that satisfy ged(q, pw(g)) ≤ τ . Therefore, based on
this definition, if the inequality above does not hold for any
possible world pw(g), then we have SimPτ (q, g) = 0, and
the graph pair 〈q, g〉 can be safely pruned (since 0 � α).
Since there are an exponential number of possible world-

s for uncertain graphs, it is not efficient to enumerate all
possible worlds. Moreover, for each possible world pw(g),
the calculation of ged(q, pw(g)) in Eq. (3) is also very costly.
Therefore, the basic idea of our solution is as follows. Given
a deterministic graph q and an uncertain graph g, we pro-
pose a uniform lower bound for GED between q and each
possible world of g. If the lower bound is larger than τ , it
means that the GED between q and each possible world of
g is larger than τ . Hence, 〈q, g〉 can be pruned safely.

Since our lower bound is based on the relationship between
GED and common structural subgraph (see Section 3.1.3),
the lower bound is called CSS-based lower bound. In the
sequel, we first introduce CSS-based lower bound for certain
graph and then extend it to the uncertain model.

4.1 Lower Bound for Certain Graph
Recall that Lemma 1 illustrates the relationship between

GED and CSS. To obtain a lower bound of ged(q, gc), we
can, instead, compute an upper bound, ub F (q, gc), of func-
tion F (q, gc) (as given in Eq. (2) of Lemma 1). Specifi-
cally, we use λV (q, gc) and λE(q, g

c) to denote the com-
mon vertex/edge labels between q and gc, i.e., λV (q, gc) =
|ΣV (q) ∩ΣV (gc)| and λE(q, g

c) = |ΣE(q) ∩ ΣE(g
c)|, where

|ΣV (·)| and |ΣE(·)| are the numbers of vertex or edge label-
s, respectively, in graphs. Due to the property of λV (q, gc)
and λE(q, g

c), we have the following inequalities about ver-
tex/edge labels:

2 · |V (s)| − |Vs| ≤ |V (s)|+ λV (q, gc) (4)

2 · |E(s)| − |Es| ≤ |E(s)|+ λE(q, g
c) (5)

Intuitively, during the transformation from graph q to gc,
the number of vertex/edge labels that are not substituted
is upper bounded by that of common vertex/edge labels be-
tween graphs q and gc.
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By substituting Eqs. (4) and (5) into Eq. (2), we can
obtain the following inequality about function F (·, ·):

F (q, gc) ≤ |V (s)|+ λV (q, gc) + |E(s)|+ λE(q, g
c). (6)

Thus, given two graphs q and gc, in order to obtain an upper
bound of F (q, gc), we need to derive the upper bound of
(|V (s)|+ |E(s)|) for any CSS s, since λV (q, gc) and λE(q, g

c)
are constants (when q and gc are given).

Lemma 2. Given two certain graphs q and gc, the max-
imum value of (|V (s)|+ |E(s)|) in Inequality (6) is achieved
if and only if |V (s)| = min{|V (q)|, |V (gc)|}, where s is a
CSS between q and gc.

Proof. (proof by contradiction) According to the defi-
nition of CSS, we know |V (s)| ≤ min{|V (q)|, |V (gc)|}. As-
sume that (|V (s)|+|E(s)|) is largest when |V (s)| <min{|V (q)|,
|V (gc)|}. It means that (V (q) − V (s)) �= φ and (V (gc) −
V (s)) �= φ. Therefore, we can arbitrarily introduce two
vertices in (V (q) − V (s)) and (V (gc) − V (s)), respective-
ly, into the current CSS s to form another CSS s′. It means
that we can obtain another CSS s′ between q and gc, where
|V (s′)| + |E(s′)| > |V (s)| + |E(s)|. Obviously, it is contra-
dicted to the assumption that |V (s)| + |E(s)| is maximum.
Therefore, Lemma 2 holds.

Without loss of generality, we assume that |V (q)| ≤ |V (gc)|.
The above Lemma tells us that (|V (s)| + |E(s)|) is max-
imum if and only if |V (s)| = |V (q)|, i.e, the CSS s cov-
ers all vertices in graph q. For simplicity of notations, let
|V (s)| = |V (q)| = m and |V (gc)| = n andm ≤ n. In order to
estimate the upper bound of (|V (s)|+|E(s)|), we should esti-
mate the upper bound of |E(s)| where |V (s)| = |V (q)| = m.
We propose the following method. Readers can skip to Lem-
ma 4 and Theorem 1 directly if they are not interested in
the detailed derivation process.
Since s is a CSS between q and gc, there must exist a

subgraph q′ in q, where q′ is structurally graph isomorphic
to s. Analogously, we can also find a subgraph gc′ in gc,
where gc′ is also structurally graph isomorphic to s. Since
|V (s)| = m, thus both q′ and gc′ have m vertices, respec-
tively. Assume that the m vertices in q′ are u1, ..., um and
the m vertices in gc′ are v1, ..., vm. It is easy to know q′

is structurally graph isomorphic to gc′. We assume that the
graph isomorphism is defined under an injective function f
from {u1, ..., um} to {v1, ..., vm}. A naive upper bound for
|E(s)| is |E(s)| ≤ |E(q)|. Obviously, this naive bound is not
tight. Thus, we need to tighten the bound.
We need to delete some edges in q to form CSS s. To

estimate the upper bound for E(s), we need to delete as few
edges as possible from q to form s. We utilize the degree
differences between q and s to count how many edges that
should be deleted. Let d(u1, q) denote the u1’s degree in
graph q. d(u1, s) is the u1’s degree in CSS s. Deleting one
edge in q affects two vertex degrees. Therefore, we need to

delete [ d(u1,q)−d(u1,s)
2

] edges to degrade d(u1, q) to d(u1, s).
In a word, we have the following equation.

DelEdge = |E(q)| − |E(s)| =
∑i=m

i=1

d(ui, q)− d(ui, s)

2

where DelEdge denotes the number of edges that should be
deleted from q.
Now, in order to estimate the lower bound for DelEdge,

we define an operator � as follows.

Definition 8. Given two integers a and b, a binary op-
erator, denoted by �, is defined as

a� b =

{
a− b, if a > b,
0, otherwise.

(7)

Let f(ui) denote the mapping vertex in graph gc under the
injective function f . It is straightforward to know d(ui, s) ≤
d(f(ui), g

c). Therefore, we have the following inequality.

DelEdge = |E(q)| − |E(s)| = ∑i=m
i=1

d(ui,q)−d(ui,s)
2

≥ ∑i=m
i=1

d(ui,q)�d(f(ui),g
c)

2

(8)

According to Eq. (8), we need to estimate the lower bound

of
∑i=m

i=1
d(ui,q)�d(f(ui),g

c)
2

. Fortunately, Lemma 3 holds.
Without loss of generality, assuming m ≤ n, we define the

degree distance, dif(q, gc), of q and gc as follows.

Definition 9. (Degree Distance) Given two certain graph-
s q and gc with sorted degree sets in non-increasing order,
i.e., d(u1, q) ≥ ... ≥ d(um, q) and d(v1, g

c) ≥ ... ≥ d(vn, g
c).

The degree distance between q and gc, denoted by dif(q, gc),
is:

dif(q, gc) =

m∑
i=1

(d(ui, q)� d(vi, g
c)) (9)

Lemma 3. Let us consider two certain graphs q and gc

with m and n vertices, m ≤ n. For any injective function
f from m vertices {u1, ..., um} in q to n vertices {v1, ..., vn}
in gc, the following inequality holds.

∑i=m

i=1

d(ui, q)� d(f(ui), g
c)

2
≥ dif(q, gc)

2
(10)

Proof. The proof can be achieved by induction. For
details, please refer to Appendix A.

Lemma 4. Let us consider two certain graphs q and gc

with m and n vertices, m ≤ n. s is a CSS between q and
gc and |V (s)| = |V (q)|. The upper bound of |E(s)| is as
follows.

|E(s)| ≤ |E(q)| − dif(q, gc)

2
(11)

where dif(q, gc) is defined in Def. 9.
Proof. According to Eqs. (8), (9) and (10), we have:

DelEdge = |E(q)| − |E(s)| ≥ dif(q, gc)

2

Finally, we derive the upper bound for E(s).

Theorem 1. (CSS-Based Lower Bound of Graph Edit
Distance for Certain Graphs) Let us consider two certain
graphs q and gc. Without loss of generality, assume that
|V (q)| ≤ |V (gc)|. The lower bound for graph edit distance
between q and gc is:

ged(q, gc) ≥ lb gedCSS(q, g
c)

= |V (gc)|+|E(gc)|−λE(q, g
c)+

dif(q, gc)

2
−λV (q, gc) (12)

where dif(q, gc) is defined in Eq. (9).

Proof. According to Lemma 2 and Eqs. (6) and (11),

F (q, gc) ≤ |V (s)|+ λV (q, gc) + |E(s)|+ λE(q, g
c)

≤ |V (q)|+ λV (q, gc) + |E(q)| − dif(q, gc)

2
+ λE(q, g

c),

Thus, based on Eq. (1) we obtain the following inequali-

ty ged(q, gc) ≥ |V (gc)| + |E(gc)| − λE(q, g
c) +

dif(q, gc)

2
−

λV (q, gc).
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Pruning Effect Analysis of CSS-Based Lower Bound.
Our CSS-based bound falls into the first category, namely,
“global filter”. Please refer to our discussion about global
filters in the related work section (Section 8). More impor-
tantly, our CSS-based lower bound is proven to be tighter
than the two existing ones in [29] and [31]. Note that, we on-
ly need to compare our lower bound with the label-multiset-
based lower bound in [31], denoted as lb gedLM (q, gc), since
[31] has proven that lb gedLM (q, gc) is tighter than the ver-
tex/edge number-based lower bound in [29].

Theorem 2. Given two certain graphs q and gc, it holds
that

lb gedCSS(q, g
c) ≥ lb gedLM (q, gc),

where lb gedLM (q, gc) = max{|V (q)|, |V (gc)|} −λV (q, gc)+
max{|E(q)|, |E(gc)|} − λE(q, g

c).

Proof. For details, please refer to Appendix B.

4.2 Lower Bound for Uncertain Graphs
In this section, we discuss how to compute a lower bound

for GED between graph q and uncertain graph g. Let us
recall lb gedCSS(q, g

c) in Theorem 1. If we utilize Eq. (12)
to compute the bound for uncertain graph g, all elements
in Eq. (12) are constants except for λV (q, gc). Therefore,
the only remaining issue is to compute an upper bound of
λV (q, gc) for all possible worlds gc of uncertain graph g.

Definition 10. (Vertex Label Bipartite Graph) Given a
certain graph q and an uncertain graph g, we can construct
a vertex label bipartite graph Gb = (V (g), V (q)). There is
an edge between vi(∈ V (g)) and uj(∈ V (q)) iff l(uj) ∈ l(vi).

{?a} {Ci}{A}

{NS, P, A} {S, Ci} {A}

{NS} {C}
u2u1 u3 u4 u5 u6

v2v1 v3 v4 v5 v6 v7

{?b}

{C}

u7 u8

v8

{?c} {?x}

{?a}{?c} {?x} {?b}
v9 v10

{?d} {Ci}

V(q2):

V(g1):

Figure 8: Vertex label bipartite graph of g1 and q2

Figure 8 shows an example of a vertex label bipartite
graph of q2 and g1. Since λV (q, g) ≤ max

gc∈PW (g)
{λV (q, gc)},

we need to estimate the maximum value for λV (q, gc) in al-
l possible worlds gc of uncertain graph g. We can reduce
the problem of estimating the maximum value for λV (q, gc)
to the maximum matching problem. A maximum matching
is exactly to identify the largest set of non-adjacent match-
ing edges, which can be solved by a classic algorithm, e.g.,
Hungarian algorithm [10].
The upper bound for λV (q, g) equals to the number of

matching edges in the maximum matching. According to
the above analysis, we have the following theorem.

Theorem 3. (CSS-Based Lower Bound of Graph Edit Dis-
tance for Uncertain Graphs) Let us consider a certain graph
q and an uncertain graph g. The CSS-based lower bound,
lb gedCSS(q, g), of graph edit distance ged(q, g) is given by:

ged(q, g) ≥ lb gedCSS(q, g)

= |V |+ |E| − λE(q, g) +
dif(q, g)

2
− λV (q, g),

(13)

where |V | = max{|V (g)|, |V (q)|}, |E| is the number of edges
in graph q or g with more vertices, λE(q, g) = |∑E (q) ∩∑

E (g)|, dif(q, g) is defined in Eq. (9) and λV (q, g) is the
size of the maximal matching in vertex label bipartite graph.

5. PROBABILISTIC PRUNING
The basic idea of probabilistic pruning is: utilizing the

similarity probability threshold to filter out false alarms.
Specifically, the intuition is to prune those graph pairs 〈q, g〉
with low similarity probabilities (i.e., SimPτ (q, g) < α).
By replacing graph edit distance ged(q, pw(g)) (given in E-

q. (3)) with the CSS-based lower bound lb gedCSS(q, pw(g))
(Theorem 3), we obtain an upper bound of SimPτ (q, g) un-
der possible world semantics. That is, we have:

SimPτ (q, g) ≤
∑

pw(g)∈PW (g)

Pr{pw(g)|lb gedCSS(q, pw(g)) ≤ τ}. (14)

Let C(q, g) be |V | + |E| − λE(q, g) +
dif(q, g)

2
, which is

a constant (given q and g). By substituting C(q, g) into
Eq. (14), we can rewrite Eq. (14) as:

SimPτ (q, g)≤
∑

pw(g)∈PW (g)

Pr{pw(g)|λV (q, pw(g)) ≥ C(q, g)− τ}

= Pr{λV (q, g) ≥ C(q, g)− τ}. (15)

The Rewriting of Probability Upper Bound. Next,
the only remaining issue is how to compute the upper bound
of SimPτ (q, g) in Inequality (15). Intuitively, λV (q, g) in
Inequality (15) is the number of common vertex label pairs
between graphs q and g. In other words, we can define
a mapping from V (g) to V (q), and count the number of
matching vertex labels.
Without loss of generality, we assume that graph g has m

vertices, which correspond tom variables x1, x2,. . . , and xm,
respectively. Each variable xi has the value domain {0, 1}.
If a vertex vi ∈ V (g) has a matching with uj ∈ V (q) such
that l(vi) = l(uj), then variable xi (w.r.t. vertex vi) is set
to 1, otherwise xi is set to 0. As a result, we can prove that
the RHS of Inequality (15) is equivalent to: Pr{∑m

i=1 xi ≥
C(q, g)− τ}. Specifically, we have the following lemma.

Lemma 5. Given a deterministic graph q and an uncer-
tain graph g, it holds that: SimPτ (q, g) ≤ Pr{∑m

i=1 xi ≥
C(q, g)− τ}.

Note that, in a matching each vertex in q can be only
matched with one vertex in g at most. It indicates that
variables xi take different values in different possible worlds
pw(g), and sometimes they might be correlated with each
other. Thus, we will further relax this probability upper
bound in Lemma 5, by using independent variables directly.
To reduce the computation cost w.r.t. correlated variable

xi, we introduce new variable yi for each vertex vi ∈ V (g)
to further relax the probability upper bound in Lemma 5.
Specifically, similar to variables xi, we also assume that yi =
1, if l(vi) = l(uj). The difference is that each vertex uj can
be used more than one time (i.e., matching with more than
one vertices in V (g)). In this case, we know that it always
holds that yi ≥ xi. Thus, we obtain the following lemma.

Lemma 6. Given a graph q and an uncertain graph g,
it holds that: Pr{∑m

i=1 xi ≥ C(q, g) − τ} ≤ Pr{∑m
i=1 yi ≥

C(q, g)− τ}.
Furthermore, our newly defined m variables y1, y2, . . . ,

and ym are independent. Therefore, we denote (y1 + y2 +
. . . + ym) as a single random variable Y . By applying the
Markov’s inequality [5], we derive an upper bound as follows:
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Theorem 4. (Probabilistic Upper Bound for Similarity
Probability) Let us consider a deterministic graph q and an
uncertain graph g. The upper bound for SimPτ (q, g) is given
as follows.

SimPτ (q, g) ≤ ub SimPτ (q, g) =
E(Y )

C(q, g)− τ
(16)

where E(Y ) =
∑m

i=1 E(yi) and E(yi) = Σlj∈l(vi)Pr(lj |lj ∩
ΣV (q) �= ∅) and C(q, g) =|V |+ |E|−λE(q, g)+

dif(q,g)
2

, and
|V |, |E|, λE(q, g) and dif(q, g) are defined in Theorem 3.

Proof. According to Lemmas 5 and 6, we have SimPτ (q, g)
≤ Pr{∑m

i=1 yi ≥ C(q, g)− τ}. Let us denote (y1+y2+ . . .+
ym) as a single random variable Y . Thus, SimPτ (q, g) ≤
Pr{Y ≥ C(q, g)− τ}. Based on the Markov’s inequality [5],

we obtain SimPτ (q, g) ≤ E(Y )
C(q,g)−τ

.

Example 4. Assume that τ = 4 and α = 0.6. Consid-
ering the deterministic graph q1 and uncertain graph g1 in
Figure 3, E(Y ) =

∑10
i=1 E(yi) = 5. According to Eq. (16),

we have ub SimPτ (q1, g1) = 5/13 ≈ 0.38 < 0.6. Thus, we
prune the graph pair 〈q1, g1〉 safely.

We also consider correlations among variables xi directly
and derive tight upper bounds by the law of total probability
[5]. Due to space limit, we have to put it in our future work.

6. SIMJ QUERY PROCESSING
We first present how to conduct SimJ processing. Then,

we propose a cost-based query optimization technique, which
divides possible worlds of uncertain graphs into fine-grained
groups and thus attains higher pruning power.

6.1 SimJ Procedure
Algorithm 1 (please refer to Appendix D) presents the

procedure of our SimJ processing approach. For each pair of
graphs, we will first compute the lower bound lb gedCSS(q, g)
of GED via Theorem 3 (line 3). If lb gedCSS(q, g) is larger
than τ , the graph pair 〈q, g〉 can be pruned safely; other-
wise, we compute the upper bound of the similarity proba-
bility by Theorem 4 (line 5). If the probability upper bound
is smaller than α, then we can safely filter out the graph
pair 〈q, g〉; otherwise, we need to conduct the verification
(lines 6-15). Regarding the computation of GED between
two certain graphs for the refinement (as given in Eq. (3)),
any existing method, such as [17], can be adopted.
We give the time complexity of Algorithm 1. For more

details please refer to Appendix D.

6.2 Cost-Based Query Optimization
In order to improve the pruning power, we propose to di-

vide all possible worlds of an uncertain graph g into disjoint
possible world groups (denoted as PWGi). Each PWGi

contains fewer possible worlds. Thus, we can obtain tighter
lower/upper bounds of the graph edit distance and similarity
probability. Algorithm 2 (in Appendix E) gives the details.
Specifically, the uncertain graph g is divided into k pos-

sible world groups PWG1, . . . , PWGk. Each lower bound
lb gedCSS(q, PWGi) is computed according to Theorem 3.
The groups satisfying the inequality lb gedCSS (q, PWGi) >
τ can be pruned. Then, we can sum up upper bounds,
ub SimPτ (q, PWGi), of similarity probabilities for the re-
maining groups, which can be used for probabilistic pruning.
Partitioning Strategy. Given an uncertain graph g, we
can partition g into different possible world groups, which

may lead to different bounds for the pruning. Hence, a chal-
lenging problem arises, that is, how to partition possible
worlds of g so that we can gain a tighter lower bound.
Process of Partitioning Possible Worlds. Our partitioning s-
trategy starts with one group, and then recursively select-
s one group to split into two groups, until the number of
groups reaches a predefined threshold. Here, we will select a
group with the smallest lower bounds of graph edit distance
and/or the one with the largest upper bound of similari-
ty probability. Intuitively, such a group incurs low pruning
power, and thus needs to be further partitioned to improve
the pruning power.
Dividing a Possible World Group into Two Groups.Next, we
discuss how to partition a possible world group, PWGi, into
two groups by splitting uncertain labels of a selected vertex,
which is based on the two observations below. First, accord-
ing to Theorem 3, it is intuitive that the less uncertainties
g contains, the tighter the lower bound lb gedCSS(q, g) is.
Second, as mentioned in Section 5, if the number of possible
labels that a vertex contains is small and P (xi = 1|L(vi) = l)
is small, the probability P (xi = 1) is small.

From observations above, we have the following two prin-
ciples to select a vertex (in PWGi) to split uncertain labels,
and divide PWGi into two groups.

• Select a vertex with high (total) existence probabilities
of uncertain labels in PWGi to split;

• Select a vertex with more possible labels to split.

We only need to sum up ub SimPτ (q, PWGi) for groups
whose GED lower bounds are no larger than τ , and mini-
mize the summation to obtain tighter similarity probability
upper bounds.
Cost Model for Evaluating the Partitioning. We present
a cost model to evaluate our grouping results:

argmin{ub SimPτ (q, PWGi)|lb gedCSS(q, PWGi) ≤ τ}.
With the heuristics/principles above, we can obtain differ-

ent partitioning strategies, which are evaluated by our cost
model. We select one partitioning strategy that minimizes
the proposed metric (provided by our cost model).

7. EXPERIMENTAL RESULTS

7.1 Experiment Setting

7.1.1 Datasets
Real Dataset 1. QALD-35: A benchmark delivered in
the third evaluation campaigns on question answering over
linked data. It contains 200 natural language questions, each
of which has the corresponding SPARQL query.
Real Dataset 2. WebQuestions+DBpedia SPARQL:
WebQuestions6 is an open dataset created by Berant et al. It
contains 5,810 natural language questions, denoted by We-
bQ. DBpedia SPARQL7 is a set of SPARQL query logs which
are actually posed queries against the DBpedia knowledge
base. We randomly select 73,000 SPARQL queries from the
whole dataset and create the deterministic graphs.
For natural language questions, we generate its corre-

sponding uncertain graphs, denoted by U , utilizing the method

5http://greententacle.techfak.uni-
bielefeld.de/˜cunger/qald/index.php?x=home&q=3
6http://www-nlp.stanford.edu/software/sempre/
7http://aksw.org/Projects/DBPSB.html

1817



Table 2: Statistics of Data sets
Dataset |U | avg.|V | avg.|E| avg.|LV | |D|
QALD3 200 5.73 4.51 4.50 200
WebQ 5,810 6.15 5.14 4.39 73,057
ER 100,000 64.86 157.07 9.39 100,000
SF 100,000 63.35 88.61 13.52 100,000
MM 23,250 5.35 4.92 4.21 2,500

introduced in Section 2.1. Regarding the SPARQL queries,
we build their deterministic graphs, denoted by D.
Real Dataset 3. MM Workloads8: It contains both
NLQ workloads and SPARQL query workloads, which are
based on a closed domain, i.e., music and movies.
Furthermore, in order to evaluate efficiency of our SimJ

algorithm, we construct two synthetic datasets as follows.
Synthetic Datasets. ER and SF: For the ER model, we
randomly connect M pairs of vertices as edges in the graph;
for the SF model, we use a graph generator gengraph win9

to generate graphs whose vertex degrees, d, satisfy the pow-
er law distribution. We generate two sets of deterministic
graphs for ER and SF, respectively. Table 2 lists statistics
of all datasets used in the experiments.

7.1.2 Evaluation Measures
Metrics. We adopt several metrics for the evaluation: (1)

Correct Answers (|C|), the number of the returned correct

graph pairs10; (2) Precision (p), as p = |C|
|R| , where R is the

set of returned answers for all questions; (3) Response Time,
the time cost of filtering out false alarms and refining; (4)
Candidate Ratio, the number of candidate graph pairs (after
pruning) divided by |U | × |D|. (5) Matching Proportion φ,
which is defined as follows:

φ =
|words covered by template P|

|words in the whole question NLQ|
Correct answers: Consider a returned pair 〈q, n〉, where q

is a SPARQL query and n is a natural language question.
For natural language question n, we manually issue the cor-
responding SPARQL query q′. If q matches q′ except for
entity phrases, we regard that the returned pair is correc-
t; otherwise, it is wrong. 10 students helped evaluate the
results returned by our algorithm.
Setup. All experiments are conducted on a Windows 7

PC with a 2.9GHz Pentium IV CPU and 4GB main memory.
All programs were implemented in C++.

7.2 Effectiveness Evaluation
Effect of GED threshold τ . To guarantee the quality of
answers, the GED theshold τ is varied from 0 to 2. The
similarity probability threshold α is fixed to be 0.9. When
τ = 0, the precisions over QALD-3 query log and WebQ
are both 100%. It means that all the graph pairs delivered
are correct, i.e., the corresponding natural language ques-
tion and the SPARQL query has the same query intention.
However, the number of answers is limited, i.e., 3 and 55,
respectively. When τ = 1, the correct answers are more
enough with only a small sacrifice of the precisions.
In summary, as shown in Table 3, the precision becomes

low with the growth of τ . But the number of correct answers
grows with the increasing of τ . That is because smaller τ

8a dataset acquired from a search engine company
9http://fabien.viger.free.fr/liafa/generation/

10Since it is hard to compute the recall, we utilize |C| to
measure the coverage of our method.
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Figure 9:Effect of similarity probability threshold α

restricts the difference between two graphs. If τ becomes
larger, some noises may be introduced, that is, some un-
revelent graph pairs will be returned.

Table 3: Effect of GED threshold τ
QALD-3 Query Log WebQ

τ |R| precision time(s) |R| precision time(s)
0 3 100% 1.453 55 100% 76.851
1 86 97.67% 1.862 8,351 86.54% 100.316
2 2,421 52.33% 2.113 179,227 37.69% 652.947

Effect of Similarity Probability Threshold α. We fix
the GED threshold τ to be 1, and vary the similarity proba-
bility threshold α from 0.1 to 0.9. Figure 9 shows the effect
of α on |C| and precision over real datasets. The preci-
sion grows with the increasing of α. It is reasonable that
high probability threshold filters out the low-quality graph
pairs. For example, when α is 0.7, the precision achieves
80%. Meanwhile, the number of correct answers decreases
when α is larger as depicted in Figure 9(b).
The precision on MM dataset is better than that on QALD-

3 and WeQ datasets. It is because that MM dataset is based
on a knowledge graph of specific type (music and movies),
which indicates that both natural language questions and
SPARQL queries focus on similar topics.
Case Study. We provide a case study over the experiment
“QALD-3 + DBpedia” (using QALD-3 questions and DBpe-
dia queries) in Figure 10. SimJ identifies meaningful results
of high quality. As an example, for the question “Give me
all movies directed by Francis Ford Coppola”, we find the S-
PARQL “SELECT ?film where {〈?film type F ilm〉 〈?film
director Joel Schumache}”. Note that, the returned graph
pairs do not necessarily ask the same question. The key
is that we can build templates based on these graph pairs.
Using the method discussed in step 3 of Section 2.1, we
can obtain the templates. The corresponding templates are
shown in Figure 16 (please refer to Appendix F). We also
provide the analysis of the results in Appendix F.1.
To evaluate the quality of the generated templates, we

use the questions of QALD to test the effectiveness. We
translate the questions into SPARQL queries utilizing these
generated templates, and then search these SPARQL queries
over DBpedia. The precision and recall of our method are
both 0.65 and outperform the competitors significantly. We
include the details in Appendix F.2.

SELECT ?uri WHERE
{ Germany type Country.
Germany leaderParty ?uri. }

SELECT ?film WHERE
{ ?film type Film.
?film director Joel_Schumache. }

What is the ruling party in Lisbon?

Give me all movies directed by
Francis Ford Coppola

SELECT ?product WHERE
{ ?company type Organisation.
?company foundationPlace Bangalore.
?product developer ?company.
?product type Software. }

Which software has been developed
by organizations founded in California?

Figure 10: Case study over DBpedia+QALD-3
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7.3 Efficiency Evaluation
In order to evaluate the efficiency of our method, we test

three SimJ answering techniques: the “CSS only” approach
applies the CSS-based pruning method (without using the
probabilistic pruning); the “SimJ” approach uses CSS-based
and probabilistic pruning methods; the“SimJ+opt”approach
employs the cost-based optimization by dividing possible
worlds into groups to enhance the pruning power.
Effect of Similarity Probability Threshold α. We s-
tudy the effect of α over the performance by varying simi-
larity probability thresholds α from 0.1 to 0.9. As presented
in Figure 11(a), the threshold has little impact on the prun-
ing time. When α is larger, the candidates will become less.
Therefore the overall time consumed decreases. As depicted
in Figure 11(b), employing the optimization technique, the
pruning power of the “SimJ+opt” is higher than “SimJ”.
Note that, the similarity threshold has no impact on the
pruning ability of “CSS only”.
Effect of Graph Edit Distance Threshold τ . Nex-
t, we vary GED thresholds τ from 0 to 5. Figure 12(a)
shows the response time including pruning time and ver-
ification time. The overall response time grows with the
increasing of τ , since large τ will result in more returned an-
swers, as demonstrated in Figure 12(b). Notice that “SimJ”
adopts the probability pruning in addition to the CSS-based
pruning. Therefore, “SimJ” incurs fewer candidates, which
can greatly reduce the refinement cost. Furthermore, the
“SimJ+opt” approach considers the pruning with multiple
possible world groups (rather than 1 group in “SimJ”), so
that we can obtain tighter probability upper bound and thus
enhance the pruning power. Thus, “SimJ+opt” has fewer
candidates than “SimJ”. When τ becomes larger, the im-
provement degrades slightly since larger τ decreases the up-
per bound of similarity probability as shown in Eq. 16.
7.4 Scalability Evaluation
Effect of Group Number GN . Here, we study the effect
of group number, GN , which is varied from 1 to 40 stepped
by 5. As shown in Figure 13(a), the time consumed by
“SimJ+opt” grows with the increasing of GN . Clearly, the
more groups we generate, the more filtering time we may
need in the join processing. Meanwhile, the uncertain in-
formation in each group will be less, which is beneficial to
filtering out more false alarms as confirmed in Figure 13(b).
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As expected, the group number has no impact on “SimJ”
and “CSS only” approaches.
Effect of the Number of Possible Labels |L(v)|. For a
specific data set, we average the number of possible labels,
and vary this number from 2 to 6. Figs. 14(a) and 14(b) re-
port the response time and pruning power, respectively. The
response time increases as |L(v)| increases, because “SimJ”
invokes computing the upper bound of the maximum match-
ing in a bipartite graph. Moreover, the more uncertain la-
bels g contains, the larger the bipartite graph may be. Thus,
more time will be consumed. The pruning ability decreas-
es when |L(v)| becomes larger as shown in Figure 14(b).
Note that, the pruning powers of “SimJ” and “SimJ+opt”
become higher when |L(v)| is larger than 5. The reason is
that although there are more uncertain labels incident to
each vertex, the existence probability of each uncertain la-
bel is smaller, which favors the computation of the similarity
probability upper bound.
Comparisons With Existing Works. To confirm the
performance of our CSS-based method, we compare it with
existing algorithms that are devised for deterministic graph-
s. As discussed in Theorem 2, our CSS-based lower bound
has been proven to be tighter than the two existing glob-
al filters. Regarding these outstanding algorithms proposed
recently, i.e., path [31], SEGOS [22], and Pars [30], in order
to handle uncertain graphs, they must enumerate all possi-
ble worlds or ignore vertex labels. It is impractical for the
first case due to the exponential number of possible worlds.
Thus, we implement these methods by only considering the
graph structure to handle uncertain graphs. Figs. 15(a) and
15(b) show the filtering time and candidate ratio vs. GED
threshold τ , respectively, for the comparison.
Clearly, the computation of the CSS approach is the most

efficient, and it outperforms its competitors greatly in terms
of filtering time. More importantly, as shown in Figure 15(b)
our proposed GED lower bound, lb gedCSS(q, g), has the
highest pruning power compared to other competitors.

8. RELATED WORK
8.1 Question/Answering (Q/A) over RDF
RDF Q/A systems have attracted extensive attentions in

both NLP (natural language processing) [19, 23, 20] and DB
(database) communities [24, 33].
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Figure 15: Comparison with Existing Works (AIDS)

To solve the problem of RDF Q/A, templates are wide-
ly used [19, 20]. In the well-known True Knowledge Q/A
system, a natural language question is turned into a struc-
tural query using some manually defined templates [19]. The
templates used in this system are manually defined in the
offline phase. It is expensive to pre-define all the templates
especially for the open-domain RDF knowledge graphs. The
authors in [20] propose a template-based method to answer
the aggregate-like questions. They parese the questions to
SPARQL templates, and instantiate the templates by enti-
ty/predicate mapping [20]. To the best of our knowledge,
none of existing work study how to generate templates au-
tomatically for RDF Q/A. We are the first to propose a
join-based approach for building templates automatically.
There are also some work that do not utilize templates,

such as DEANNA [23] and gAnswer [33]. DEANNA [23]
builds a disambiguation graph and reduces disambiguation
as an integer linear programming problem. gAnswer trans-
lates a natural language question into a semantic query graph
QS and tries to find the top-k matches over RDF graph with
the highest confidence probabilities. Fader et al. [7] intro-
duce a machine learning approach to answer factual ques-
tions. However, they only focus on single-relation queries.
Yao et al. [25] associates question features with answer pat-
terns described by Freebase to answer natural language ques-
tions.
Note that, although we adopt the method in gAnswer to

generate the semantic query graph QS for each natural lan-
guage question, we address the different issue. In this pa-
per, we study how to build high-quality templates for RDF
Q/A. These templates can be used in the template-based
RDF Q/A systems.

8.2 Graph Edit Distance
Recently, edit distance-based graph similarity search has

been well studied in certain graphs. Since it is an NP-hard
problem to compute GED, lots of lower bounds have been
proposed to speed up computation. They are categorized
into global filters, n-gram filters, and partition-based filters.
1. global filter. There are two existing global filters. The

first one is to compute the differences of vertex number and
edge number as the lower bound [29]. The second one is the
difference of vertex labels and edge labels [31].
2. n-gram filter. The basic idea is to represent a graph

as a set of small-size substructures (called n-grams), such
as c-star in [29], k-Adjacent Tree in [21] and paths in [31].
The intuition lies in that the two graphs must share lots of
common n-grams if they are similar to each other (i.e., their
graph edit distances are less than a threshold).
Although experiment results in existing work [29, 21, 31]

show that n-gram filters are better than the two global filters

in some real graph datasets, their superiorities over global
filters cannot be proven theoretically. Furthermore, it is easy
to find some cases that the global filters can beat these n-
gram methods. However, we can prove that our filter can
beat the two existing global filters from a theoretical per-
spective (See Theorem 2).
3. Partition-based filter. Pars [30] proposes a partition-

based method. It main idea is to decompose data graphs into
non-overlapping partitions, and compute the lower bound
according to the number of mismatchings of these partitions.
Note that, all of these filters are proposed for certain

graphs. It is not easy to extend them to uncertain scenarios.
One of the technical contributions in this work is to propose
a tight lower bound for GED in uncertain graphs.
The most widely used method computes exact graph ed-

it distance based on A∗ algorithm incorporating heuristics
[17]. It explores the space of all possible vertex mappings
between two graphs to find the optimal mapping. Zhao et
al. [31] improve A∗ with two heuristics. Specifically, exploit-
ing minimum edit filtering and local label filtering to give a
heuristic estimate of the distance from the current state to
the goal. Note that our work focuses on the filtering phase,
which are independent of the verification algorithms.

8.3 Uncertain Graph Management
Managing and mining uncertain graphs have attracted ex-

tensive attentions due to noises and inaccuracies. For exam-
ple, Zou et al. study the problem of frequent subgraph min-
ing on uncertain graphs under probabilistic semantics [35].
Kollios et al. use expected edit distance , which is extended
from edit distance based graph clustering, to probabilistic
graphs [14]. There are two existing work [27, 28] investi-
gate subgraph search over uncertain graphs. However, their
uncertain graph models do not measure the uncertainty of
labels as does in our uncertain graph model (Def. 2). Be-
yond that, the work [27] proposes the similarity model based
on maximum common subgraph, not the edit distance that
is studied in this paper. There are some previous works [11,
12] that study probabilistic XML data. In contrast, we fo-
cus on general uncertain graph data in this paper (instead
of tree structure).

9. CONCLUSIONS
To build templates for RDF Q/A, we propose a novel

approach, i.e., performing graph similarity join over large
uncertain graphs under the constraint of graph edit dis-
tance. Following the filtering-and-verification paradigm, we
propose Common Structural Subgraph (CSS)-based pruning
and probabilistic pruning to filter out as many false alarms
as possible. In order to improve the pruning ability, we di-
vide each uncertain graph to a number of groups based on a
cost model. Extensive experiments over real and synthetic
datasets have confirmed the effectiveness and efficiency of
our solution.
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B. PROOF OF LEMMA 3
Proof. (proof by induction)

Let dif ′(q, gc) denote
∑i=m

i=1 d(ui, q)� d(f(ui), g
c). We

just need to prove dif ′(q, gc) ≥ dif(q, gc).
1) (Base Case.)

When m = 1, it is straightforward that dif ′(q, gc) ≥
dif(q, gc).
When m = 2, assume the two vertex degree sets are A =

{a1, a2} (a1 ≥ a2), B = {b1, b2} (b1 ≥ b2), we need to
prove dif(q, gc)=(a1�b1) +(a2�b2) ≤ dif ′(q, gc)=(a1�b2)
+(a2 � b1). There are four cases to be discussed as follows:
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Case 1: When a1 ≤ b1 and a2 ≤ b2, dif(q, g
c)= 0, which is

minimum.
Case 2: When a1 ≤ b1 and a2 > b2, dif(q, g

c) = a2 − b2.

dif ′(q, gc) = (a1 � b2) + (a2 � b1)
= (a1 � b2) ≥ (a2 � b2) = dif(q, gc)

Case 3: When a1 > b1 and a2 ≤ b2, dif(q, g
c)= a1 − b1.

dif ′(q, gc) = (a1 � b2) + (a2 � b1)
= (a1 � b2) = (a1 − b2)
≥ (a1 − b1) = (a1 � b1) = dif(q, gc)

Case 4: When a1 > b1 and a2 > b2, dif(q, g
c) = (a1 − b1) +

(a2 − b2).

dif ′(q, gc) = (a1 � b2) + (a2 � b1)
= a1 − b2 + a2 � b1 ≥ a1 − b2 + a2 � b1
= dif(q, gc)

To summarize, we have proved that dif ′(q, gc) ≥ dif(q, gc),
where there are only two vertices in q and gc, respectively.
2) (Hypothesis.) Provided that when m ≥ k, dif ′

m(q, gc)
≥ difm(q, gc).

(Induction.) Consider the case m = (k+1). difk+1(q, g
c)

= difk(q, g
c) + ak+1 � bk+1. Assume that f(ak+1) = bi

(i < k + 1) and f−1(bk+1) = aj (j < k + 1), thus, we have

dif ′
k+1(q, g

c) = dif ′
k−1(q, g

c) + ak+1 � bi + aj � bk+1.

Let us consider ak+1� bi+aj � bk+1. According to the non-
increasing order, it is straightforward to know aj > ak+1

and bi > bk+1. Hence, according to the proof about m = 2
in the basis, we know

ak+1 � bi + aj � bk+1 ≥ aj � bi + ak+1 � bk+1

Therefore,

dif ′
k+1(q, g

c) =dif ′
k−1(q, g

c) + (ak+1 � bi) + (aj � bk+1)

≥ dif ′
k−1(q, g

c) + (aj � bi) + (ak+1 � bk+1)

= dif ′
k(q, g

c) + (ak+1 � bk+1)

According to hypothesis, we know dif ′
k(q, g

c) ≥ difk(q, g
c).

dif ′
k+1(q, g

c)≥ dif ′
k(q, g

c) + (ak+1 � bk+1)

≥ difk(q, g
c) + (ak+1 � bk+1)

= difk+1(q, g
c)

3) According to the above analysis, we can prove that
difk+1(q, g

c) ≥ dif ′
k+1(q, g

c) if difk(q, g
c) ≥ dif ′

k(q, g
c). S-

ince we have proved the basis, according to induction method,
we know Lemma 3 holds.

C. PROOF OF THEOREM 2

Proof. Without loss of generality, let us assume that
|V (q)| = m < |V (gc)| = n.

lb gedCSS(q, g
c)− lb gedLM (q, gc)

= |V (gc)|+ |E(gc)| − λE(q, g
c) +

dif(q, gc)

2
− λV (q, gc)

−(|V (gc)| − λV (q, gc) + max{|E(q)|, |E(gc)|} − λE(q, g
c))

= |E(gc)| −max{|E(q)|, |E(gc)|}+ dif(q, gc)

2

1) When |E(g)| ≥ |E(q)|,
lb gedCSS(q, g

c)− lb gedLM (q, gc)

= |E(gc)| −max{|E(q)|, |E(gc)|}+ dif(q, gc)

2

= |E(gc)| − |E(gc)|+ dif(q, gc)

2

=
dif(q, gc)

2
≥ 0.

2) When |E(gc)| < |E(q)|,
lb gedCSS(q, g

c)− lb gedLM (q, gc)

= |E(gc)| − |E(q)|+ dif(q, gc)

2

Given two certain graphs q and gc, it is straightforward to

know |E(q)|−|E(gc)| =
∑

u∈V (q) d(u, q)−
∑

v∈V (gc) d(v, g
c)

2
.

Since we know |V (q)| = m < |V (gc)| = n, according to
the definition of dif(q, gc) in Eq. 9, we have the following
equation.

|E(q)| − |E(gc)| =
∑i=m

i=1 d(ui, q)−∑j=n
j=1 d(vj , g

c)

2

≤
∑i=m

i=1 (d(ui, q)− d(vi, g
c))

2

=
dif(q, gc)

2

Hence, we know

lb gedCSS(q, g
c)− lb gedLM (q, gc)

≥ |E(gc)| − |E(q)|+ dif(q, gc)

2≥ |E(gc)| − |E(q)|+ (|E(q)| − |E(gc)|) = 0

To summarize, lb gedCSS(q, g
c) ≥ lb gedLM (q, gc) always

holds, i.e., CSS-based is tighter than the label-multiset-based
lower bound in [31].

D. ALGORITHM OF SIMJ PROCEDURE

D.1 SimJ Algorithm

Algorithm 1 SimJ Procedure( D, U , τ , α)

Require: deterministic graphs D, uncertain graphs U , graph ed-
it distance threshold τ , and similarity probability threshold
α

Ensure: graph pairs {〈q, g〉 ∈ D × U |SimPτ (q, g) ≥ α}
1: AS ← ∅
2: for 〈q, g〉 ∈ D × U do
3: compute lb gedCSS(q, g) according to Theorem 3
4: if lb gedCSS(q, g) ≤ τ then
5: compute ub SimPτ (q, g) according to Theorem 4
6: if ub SimPτ (q, g) ≥ α then
7: SimPτ (q, g) ← 0
8: for possible world pw(g) ∈ PW (g) do
9: compute lb gedCSS(q, pw(g)) by Theorem 2
10: if lb gedCSS(q, pw(g)) ≤ τ then
11: compute ged(q, pw(g))
12: if ged(q, pw(g)) ≤ τ then
13: SimPτ (q, g) ← SimPτ (q, g) + Pr(pw(g))
14: if SimPτ (q, g) ≥ α then
15: put 〈q, g〉 into AS
16: return AS

1822



D.2 Complexity Analysis
Complexity of computing CSS-based lower bound of
GED for uncertain graphs (line 3 in Algorithm 1).
Let us recall the lower bound lb gedCSS(q, g) = |V |+ |E| −
λE(q, g) +

dif(q, g)

2
− λV (q, g). Its dominating computation

is caused by λV (q, g), i.e., the size of the maximal matching
in the vertex label bipartite graph. The maximal matching
problem can be sovled by a classic Hungarian algorithm [10],
with time complexity O(|V |3). Hence, the complexity of
computing CSS-based lower of GED for uncertain graphs is
O(|V |3), where |V | = max{|V (g)|, |V (q)|}.
Complexity of computing upper bound of SimPτ (q, g)
for uncertain graphs (line 5 in Algorithm 1). Let us

recall the upper bound ub SimPτ (q, g) = E(Y )
C(q,g)−τ

, where

E(Y ) =
∑m

i=1 E(yi) can be computed with the time com-
plexity O(|V | · |l(v)|). The time complexity of computing
C(q, g) is O(|V (q)| · |V (g)|). Hence, the time complexity
O(min{|V | · |l(v)|, |V (q)| · |V (g)|}).
Complexity of computing CSS-based lower bound
of GED for certain graphs (line 9 in Algorithm 1).
Let us recall the lower bound lbgedCSS(q, g

c) = |V (gc)|+
|E(gc)|−λE(q, g

c)+ dif(q,gc)
2

−λV (q, gc), where |V (gc)| and
|E(gc)| are constants. Since the computation complexity of
λV (q, gc) and λE(q, g

c) is O(|V (q)| · |V (gc)|+ |E(q)| · |E(gc)|)
and the computation complexity of dif(q,gc)

2
is O(|V (q)|),

the complexity of computing CSS-based lower of GED for
certain graphs is O(|E(q)| · |E(gc)|).
Complexity of verification (lines 8-15 in Algorith-
m 1). In the verification phase, we need to compute SimPτ (q
, g) by enumerating all possible worlds in the worst case.
Moreover, it invokes the GED computation, which is a well-
known NP-hard problem. Nevertheless, it is feasible to com-
pute the graph edit distance since the semantic query graphs
and SPARQL graphs are small in real applications.
Note that our proposed upper/lower bounds are efficient

with the time complexity O(max{|E(q)|·|E(gc)|, |V |3}) even
if the verification procedure is NP-hard.

E. ALGORITHM OF GROUP-BASED OP-
TIMIZATION

Algorithm 2 SimJ OPT( q, g, τ , α)

Require: uncertain graph q, deterministic graph g, graph edit
distance threshold τ , and similarity probability threshold α

Ensure: ub SimPτ (q, g)
1: SimPτ (q, g) ←− 0
2: divide g into k possible world groups PWG1, . . . , PWGk

3: for i = 1 to k do
4: compute lb gedCSS(q, PWGi) according to Theorem 3
5: if lb gedCSS(q, PWGi) ≤ τ then
6: compute ub SimPτ (q, PWGi) according to Theorem 4
7: t ←− ub SimPτ (q, PWGi)
8: ub SimPτ (q, g) ←− ub SimPτ (q, g) + t
9: return ub SimPτ (q, g)

F. EXPERIMENTAL RESULTS

F.1 Result Analysis
Effect of the number of relations k. We have analyzed
the experimental results carefully, and find that the sim-
ple query patterns are easily recognized. Figure 17 presents

SELECT ?uri WHERE
{ <___> type <___>.
<___> leaderParty ?uri. }

SELECT ?film WHERE
{ ?film type <___>.
?film director <___>. }

What is the ruling party in <___>?

Give me all <___> directed by <___>

SELECT ?product WHERE
{ ?company type Organization.
?company foundationPlace <___>.
?product developer ?company.
?product type <___>. }

Which <___> has been developed
by organizations founded in <___>?

Figure 16: Templates for the case study
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Figure 17: Effect of k (the number of relations)

the effect of the number of relations over the datasets of
QALD-3 and WebQ, where the horizontal x-axis represents
the number of relations (denoted by k), and vertical y-axis
represents the proportion of correct patterns (i.e., the num-
ber of correct patterns with k relations divided by all correct
patterns), denoted by ρ. It shows that the patterns with few
relations are better recognized. The reason is that if a nat-
ural language question is complex, the generated sematic
query graph may be incorrect probably.
Failure analysis. We also provide the failure analysis for
the templates generated by our method. There are two key
reasons for the errors. The first reason is that it fails to
generate correct semantic query graphs for some natural
language questions. For example, in the question “Who
composed the music for Harold and Maude?”, it fails in
linking “Harold and Maude” to the corresponding entity
“Harold and Maude”. The second one is that some graph
pairs have small graph edit distance, but they do not share
the same query intension. We give the ratio of each reason
in Figure 18.

Incorrect Semantic
Query Graph

73%
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Graph Edit Distance
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Others
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Figure 18: Failure Analysis

F.2 Q/A Using Templates
Comparisons With Other Systems. In order to evaluate
the quality of the templates, we use the questions of QALD-
3 to test the effectiveness. We translate the questions into
SPARQL queries utilizing these generated templates, and
then search these SPARQL queries over DBpedia.
We utilize the evaluation measures that are also used in

QALD task. The overall precision and recall are computed
by taking the average mean of all single precision and recall
values, as well as the overall F-measure11.

11http://greententacle.techfak.uni-
bielefeld.de/˜cunger/qald/4/qald-4.pdf
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Recall(n) =
number of correct system answers

number of gold standard answers

Precision(n) =
number of correct system answers

number of system answers

F-Measure(n) =
2× Precision×Recall

Precision+Recall

To confirm the effectiveness of our method, we compare it
with gAnswer [33] and DEANNA [23]. As shown in Table 4,
our template-based method is more effective, which indicates
that the generated templates have high quality.

Table 4: Q/A results compared with other systems
Methods Precision Recall F-1
Our method 0.65 0.65 0.65
gAnswer 0.41 0.41 0.41
DEANNA 0.21 0.21 0.21

Effect of matching proportion φ. If we cannot find a
match between a template with the entire sentence of a new
natural language question (NLQ for short), we choose the
template that maximizes the matching proportion φ.
We can also generate SPARQL queries based on this par-

tial match. To evaluate the effect of φ, we conduct experi-
ments over real datasets by varying φ from 0.5 to 1. Table 5
shows that allowing partial template match improves both
the recall and precision of RDF Q/A task. The main reason
is by allowing partial match, we can answer more questions
without affecting those can be answered correctly by setting
φ = 1 (i.e., take no account of the partial match).

Table 5: Effect of φ
φ 0.5 0.6 0.7 0.8 0.9 1.0

Precision 0.69 0.69 0.68 0.66 0.66 0.65
Recall 0.73 0.72 0.70 0.69 0.67 0.65
F-1 0.71 0.70 0.69 0.67 0.66 0.65
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