
Information Sciences 261 (2014) 116–131
Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier .com/locate / ins
SQBC: An efficient subgraph matching method over large
and dense graphs
0020-0255/$ - see front matter � 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.ins.2013.10.003

⇑ Corresponding author. Address: Institute of Computer Science and Technology, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing
PR China. Tel.: +86 10 82529643.

E-mail address: zoulei@pku.edu.cn (L. Zou).
Weiguo Zheng a,b, Lei Zou b,⇑, Xiang Lian c, Huaming Zhang d, Wei Wang e, Dongyan Zhao b

a State Key Laboratory of Software Engineering, Wuhan University, LuoJiaShan, Wuhan, PR China
b Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing, PR China
c Department of Computer Science, University of Texas – Pan American, 1201 West University Drive, Edinburg, TX 78539, USA
d Computer Science Department, University of Alabama in Huntsville, Huntsville, AL 35899, USA
e Department of Electronic Technology, Engineering University of CAPF, Xi’an, PR China

a r t i c l e i n f o a b s t r a c t
Article history:
Received 22 November 2012
Received in revised form 9 July 2013
Accepted 4 October 2013
Available online 21 October 2013

Keywords:
Algorithm
Large network
Database
Graph theory
Subgraph isomorphism
Index strategy
Recent progress in biology and computer science have generated many complicated
networks, most of which can be modeled as large and dense graphs. Developing effective
and efficient subgraph match methods over these graphs is urgent, meaningful and neces-
sary. Although some excellent exploratory approaches have been proposed these years,
they show poor performances when the graphs are large and dense. This paper presents
a novel Subgraph Query technique Based on Clique feature, called SQBC, which integrates
the carefully designed clique encoding with the existing vertex encoding [40] as the basic
index unit to reduce the search space. Furthermore, SQBC optimizes the subgraph isomor-
phism test based on clique features. Extensive experiments over biological networks, RDF
dataset and synthetic graphs have shown that SQBC outperforms the most popular compet-
itors both in effectiveness and efficiency especially when the data graphs are large and
dense.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Graph is fascinating and superior to other data structures to model complex relationships among objects. For example, a
chemical compound can be represented as a graph, where each vertex is an atom and each edge is a chemical bond. The
complex interactions among components in cells (e.g. proteins, genes, metabolites) can also be modeled as graphs, such
as pathways and protein–protein interaction networks.

Recently, the growing popularity of biological networks has generated many interesting graph data management
problems, such as motif detection, pathway finding and network alignment, among which, a basic operation is to search
a query graph over a large graph database, called subgraph search, which can assist biologists to find some interesting
complexes and motifs in biological networks. However, the key challenge of subgraph search lies in its inherent hardness
(subgraph isomorphism is a NP-complete problem [32]) and large graph sizes. PathGuide (http://www.pathguide.org/)
contains 325 biological pathway databases, most of which are large and growing rapidly.

There are two scenarios of subgraph queries. One is searching a query graph over a large number of small graphs, and the
other is searching a query graph over a single large graph. For example, searching for chemical compounds containing a
specific substructure associated with biological activity from a compound database belongs to the former one, where each
100871,

W. Zheng et al. / Information Sciences 261 (2014) 116–131 117
compound corresponds to a small data graph. Given a structural motif, locating its occurrences over a large biological net-
work belongs to the latter scenario, which is the focus of this work.

Since the volume (amount of data), velocity (speed of data in and out) and variety (range of data types and sources) of
scientific and Web data are increasing sharply [14], studying subgraph queries over large and dense graphs is meaningful
and has attracted extensive attention. For example, the RDF (Resource Description Framework) data model is a W3C stan-
dard to describe resources on the Web and enables data exchange and richer integration [13]. In RDF, data items are repre-
sented in the form of triples (subject, predicate, object). As a standard language for querying RDF data, SPARQL is considered
as one of the key technologies of the Semantic Web. Fig. 1(a) gives a query example, which retrieves the given name and
family name of a scientist, who was born in Germany, and whose spouse was born in Hungary. In this SPARQL query, the
‘‘where’’ clause consists of triple patterns that contain either variables or literals. Actually, each SPARQL query can be rep-
resented by a graph [16]. The graph corresponding to this SPARQL query is presented in Fig. 1(b). As a result, any SPARQL
query can be equivalently transformed a subgraph query problem, which locates the subgraphs in RDF data graph matching
with the query graph. Besides the application in Semantic Web mentioned above, studying the problem of subgraph query
over large graphs is useful and promising in social networks [33], bioinformatics [20], and road networks [2] as well.

Subgraph isomorphism has been well studied for almost 40 years, and many classical algorithms have been proposed to
solve this problem, such as ULMMAN [32] and VF2 [4]. However, these methods do not work well in subgraph search prob-
lem since they need to compute everything on the fly. Therefore, the subgraph search problem has attracted tremendous
interests in database community. In order to speed up query processing, existing approaches adopt filtering-and-refinement
paradigm and the whole framework has two steps: offline and online. Given a graph database, we first build structural
indexes in offline processing. When a query graph is issued, structural indexes are utilized to prune false positives in graph
databases. Specifically, in the first scenario, data graphs that cannot contain the query graph are eliminated. In the second
scenario, some subgraphs of the target large graph that cannot contain query graph are filtered out to reduce the search
space for subgraph isomorphism.

In this paper, we propose a novel Subgraph Query technique Based on Clique (see Definition 3) features (denoted as SQBC),
which also follows the filtering-and-refinement paradigm. It employs a hybrid index by considering both neighborhood
information and structural features. To summary, we make the following contributions in this paper:

� We propose a new subgraph query algorithm over large and dense graphs.
� We exploit a hybrid index by considering both the neighborhood information and structural features, and carefully design

the vertex code and clique code to strengthen the pruning power.
� We optimize the subgraph isomorphism test based on clique features.
� Extensive experiments over synthetic and real datasets have shown the effectiveness and efficiency of the proposed

algorithm.

The remaining of this paper is organized as follows: Section 2 reviews the related work on subgraph search. The prelim-
inaries and problem definition are introduced in Section 3. Section 4 presents the hybrid index, based on which an effective
and efficient subgraph search algorithm is described in Section 5. In Section 6, the experimental results are reported over
synthetic and real datasets in terms of efficiency. The analyses of the proposed method are discussed in Sections 7 and 8
concludes this paper.

2. Related work

So far, many subgraph search algorithms have been proposed and their differences lie in pruning strategies
[5,9,7,6,17,23,24,27,35–37,39,34,28,20,3,43,38,42,40]. A popular way to perform filtering is to select structural features
(e.g., paths, subtrees, subgraphs) as features, and occurrences of these features in graph databases are recorded, like an in-
verted index. When a query graph Q is given, all features in Q are enumerated and their occurrences in G are utilized to find
Fig. 1. A SPARQL query and its corresponding graph.

118 W. Zheng et al. / Information Sciences 261 (2014) 116–131
matches of Q. In GraphGrep [7], all paths up to maxL are enumerated as features. SING [20] follows the same method, but
proposes a compression technique to reduce the index size. gIndex [35] and FG-index [3] propose to use frequent subgraphs
as features instead of paths, since subgraphs can provide larger pruning power. In order to reduce the search space, QuickSI
[23] uses the frequencies of tree features that appear in the graph database, and determines an effective search order. How-
ever, these feature-based solutions do not work well in a single large graph G, i.e., the specific problem addressed by this
paper. For example, it is costly to enumerate all paths in a large dense graph. Mining frequent subgraphs from a large single
graph is still an open problem in data mining community [10,41]. Therefore, existing features are not suitable for large dense
biological networks. Furthermore, most features are only designed for pruning. They do not consider how to utilize features
to speed up subgraph isomorphism test except for GraphGrep.

Another index strategy is based on neighborhood structure around each vertex. The rationale of these methods is as fol-
lows: According to the subgraph isomorphism definition, each vertex u in query graph Q must have a mapping vertex v in
data graph G if G contains Q. Furthermore, the neighborhood structure around u should also be preserved around v. Based on
the intuition, some vertices in G can be eliminated to reduce the search space for subgraph isomorphism algorithms. For
example, GCoding [43] computes spectral code for each vertex by considering two-hop subgraph around the vertex. SPath
[38] utilizes n-step shortest paths around vertices as basic index units. NOVA [42] proposes a novel vector index (nIndex)
based on the neighborhood label distribution of vertices. However, these methods do not show satisfactory performance
in large and dense networks, because the n-step local structures around some high-degree vertices are very large, which will
lead to large offline computing overhead. SMS [40] designs a vertex code for each vertex according to their neighborhoods,
which is lightweight. However, its pruning ability is limited due to the little local information it captures.

In this paper, we propose to employ a hybrid index by considering both the neighborhood information and structural fea-
tures. First, we propose a simple yet effective strategy to encode neighborhood structure around each vertex, which is similar
to that in SMS. Specifically, given a vertex v, we only consider its neighbor labels and the degrees of the neighbors. Different
from that in SMS, we incorporate the clique (see Definition 3) information into the signature to improve its pruning ability.
The lightweight encoding strategy facilitates both offline index building and online pruning process in dense graphs. Com-
pared with existing approaches, experimental study shows that the pruning power of the lightweight encoding strategy does
not degrade significantly.

Furthermore, we find all maximal cliques (a subgraph where each pair of vertices has an edge, formally defined in Definition
3) in data graph G as features. Obviously, if a query graph Q contains a clique, its matches also contain cliques. Therefore, we
only need to probe cliques and their neighborhood structures in data graph G. Cliques in biological networks are of interest to
biologists because many different problems from bioinformatics have been modeled using cliques [25,22,18]. For example,
Samudrala and Moult [22] model protein structure prediction as a problem of finding cliques in a graph whose vertices rep-
resent positions of subunits of the protein. Moreover, ‘‘clique’’ features can be used to optimize subgraph isomorphism check.
It is easy to check if a query graph Q (or a subgraph of Q) is subgraph isomorphic to a clique by a cheap set operation, based on
which, we optimize verification process, i.e., subgraph isomorphism test.

3. Preliminaries and problem definition

In this section, we give the general definition of subgraph isomorphism before presenting the problem definition in this
paper. Table 1 lists the frequently-used notations throughout the paper.

A vertex-labeled graph is defined as a 4-tuple G = {V, E, LV, F}, where (1) V is a set of vertices; (2) E # V � V is a set of
edges; (3) LV is a label set; and (4) F is a function V ? LV that assigns a label to each vertex. A biological network can be mod-
eled as a graph, in which each vertex represents a molecule or complex, and each edge denotes the relationship between two
vertices. Fig. 1 shows two graphs Q and G, where the letter inside vertices are vertex labels, and v1, . . . ,v6 and u1, . . . ,u7 beside
vertices are vertex IDs that we introduce to simplify description of the graph.
Table 1
Frequently-used abbreviations.

Notations Definition and Description

NB(v) Neighbors of vertex v
NDL Neighbor degree information in terms of labels
SumLS(c) The sum of vertex labels in clique c
IS Id set
LS Label set
CMC The current maximal clique
SP(v) The supervertices of vertex v
CV(v) The candidates of vertex v
SNP Sequence number of position
SMQ The match sequence of Q
SMG The match sequence of G
CCR Clique coverage rate

W. Zheng et al. / Information Sciences 261 (2014) 116–131 119
Definition 1 (Graph Isomorphism [40]). A graph G = {V, E, LV, F} is isomorphic to another graph G0 ¼ fV 0; E0; L0V ; F
0g, denoted by

G � G0, if and only if there exists a bijection function g, such that (1) "v 2 V, F(v) = F0(g(v)); and (2)
8v1; v2 2 V ;v1v2

���! 2 E() gðv1Þgðv2Þ
�������!

2 E0.
Definition 2 (Subgraph Isomorphism [40]). Given two graphs Q and G, Q is subgraph isomorphic to G if and only if Q is iso-
morphic to at least one subgraph G0 of G, and G0 is called a match of Q in G.

For example, Fig. 2 describes a running example of the query graph Q and the target graph. The letters inside vertices are
vertex labels, and v1, . . . ,v6 and u1, . . . ,u7 beside vertices are vertex IDs. Q is subgraph isomorphic to G, where the match of Q is
denoted by dotted lines.

Since we adopt maximal cliques features in this paper, we give its formal definition here.

Definition 3 (Clique). A clique is a (sub)graph where each two vertices have an edge, where a maximal clique is a clique that
is not included in another larger clique.

For example, G has two maximal cliques. One is c1 that consists of vertices u1, u2, u3 and u7. The other one consists of ver-
tices u1, u6 and u7.

Problem Statement 1. Given a query graph Q and a single large data graph G, the problem to be addressed in this paper is to
find all matches of Q over G, where jQj � jGj [40].

In Problem Statement 1, jQj and jGjdenote the number of vertices in Q and G, respectively. jQj � jGjmeans that jGj is far larger
than jQj, which emphasizes that the problem addressed in this paper is answering subgraph queries over a single large graph.

4. Hybrid index

The main framework for our algorithm is in accordance with the state-of-art paradigm, i.e., construct the index first (off-
line phase) and then conduct the query processing (online phase). The intrinsic difference of many subgraph search algo-
rithms lies in indexes and pruning strategies. In this section, we first introduce the features to be indexed, and then
organize the features in a hybrid index structure.

4.1. Index unit

In this paper, we propose to utilize a hybrid index by considering both vertex neighborhood information and structural
features. First, we design a lightweight encoding technique and then propose to mine the maximal cliques as structural
features.

4.1.1. Vertex feature
Since subgraph isomorphism is NP-complete, an efficient subgraph query algorithm should reduce the search space as

much as possible. In a single large graph, it is very expensive to mine lots of complex structures. Therefore, we design a light-
weight index, i.e., vertex feature, which is based on the neighborhood structure of each vertex.

Definition 4 (Vertex Code). Given a vertex u in graph G, its vertex code is defined as C(u) = [L(u), S(u), NDL(u) = {li,
(di1, . . . ,dim)}+], where L(u) is u’s label, S(u) is the size of the largest maximal clique containing u, NDL(u) denotes the degree
information of u’ neighbors in terms of labels, li is a vertex label (di1, . . . ,dim) is the degree list of u’s neighbor vertices with
label li and di1 P di2 P � � �P dim. If u is not included in any clique, S(u) = 0.
Example 1. The vertex codes of v4, u1 and u6 in Fig. 2 are as follows: C(v4) = [a, 0, {a, (2); b, (2,2)}], C(u1) = [a, 4, {a, (3); b, (4);
c, (4); d, (3)}], and C(u6) = [a, 3, {a, (4); b, (4,2)}].

Note that the vertex code here is an extension of the one in [40] by considering the maximal clique features, S(u). Differ-
ent from existing neighborhood pruning methods, our vertex code is very cheap to generate in dense graphs.
av4

b

c
a

b
a

v3

v2

v5

v1

v6

au6

b

c
a

b a

d

u5

u4
u3

u7

u2

u1

Q G
c1

Fig. 2. A running example of the query graph Q and the target graph G.

120 W. Zheng et al. / Information Sciences 261 (2014) 116–131
For the purpose of presentation, we define presequence in Definition 5, which is used to generate the candidates of a ver-
tex in query Q.

Definition 5 (Presequence [40]). Given two sequences of integers in descending order, S = (s1,s2, . . . ,sm) and T = (t1, t2, . . . , tn),
S is called a presequence of T if and only if (1) m 6 n and (2) "si 2 S, j{tj jtj P si ^ tj 2 Tj}jP i, where 1 6 i 6m and 1 6 j 6 n.

Example 2 presents three sequences to illustrate the presequence relationship.

Example 2. Given three sequences S1 = {11,9,8,5,3}, S2 = {14,13,10,8,5}, and S3 = {15,13,9,7,6,4,2}. For each element s in
S1, there are enough elements in S3 that are larger or equal to s. Thus, S1 is a presequence of S3. There are only two elements in
S3 that are no smaller than the element ‘‘10’’ in S2. However, element ‘‘10’’ is the third largest element in S2. Hence, S2 is not a
presequence of S3.

It is intuitive that if a vertex u in Q have matches in G, the neighborhood structure around u should be preserved around
the mapping vertices. Formally, To test whether a vertex in Q matches a vertex in G or not, we give the definition of subvertex
based on presequence.

Definition 6 (Subvertex, Supervertex). Given two vertices v and u in query graph Q and data graph G, respectively, v is a
subvertex of u if and only if: (1) L(v) = L(u); (2) S(v) 6S (u); (3) "li 2 NDL(v), $lj 2 NDL(u) and li = lj and the degree list
{di1, . . . ,dim} of NDL(v) is a presequence of the degree list {dj1, . . . ,djn} of NDL(u). (If v is a subvertex of u, we say that u is v’s
supervertex.)

It is straightforward to know, if a vertex v (in query graph Q) is not a subvertex of u (in data graph G), u cannot match v.
Thus, we can easily find that u1 cannot match with v4.

To accelerate the process of finding the candidates of a vertex, an inverted index is constructed, which consists of labels as the
keys and the ID lists of the vertices with the corresponding label as the values. Furthermore, we build an inverted index for each
vertex v, in which the key is the label of v’s neighbors and the value is the ID list of v’s neighbors with the corresponding label.

4.1.2. Maximal clique feature
In this paper, we propose to mine maximal cliques as features, since it can support both filtering and verification. (The

discussions regarding to the verification will be presented in Section 5.)
After obtaining all maximal cliques, we can regard them as specific nodes, and encode them so as to test whether one sub-

graph (may be a clique) of query Q is subgraph isomorphic to a clique or not.

Definition 7 (Clique Code). Given a clique c in graph G, its code is defined as C(c) = [Num(c), SumLS(c), IS(c) = {u1, . . . ,um},
LS(c) = {li, (di1, di2, . . . ,dik)}+], where Num(c) is the number of vertices in clique c, SumLS(c) is the sum of vertex labels in the
clique (each distinct label can be hashed to an integer value), IS(c) is the corresponding vertex id set in the clique, li is a vertex
label and (di1, di2, . . . ,dik) is the degree list of vertices with label li in clique c.

For example, the clique code of clique c1 consisting of vertices u1, u2, u3 and u7 in Fig. 1 is C (c1) = [4, 394, {u1, u2, u3, u7}, {a,
(4); b, (4); c, (4); d, (3)}] (assume that each vertex label is mapped to its ASCII value).

Definition 8 (Subclique). Given two cliques cq and cg in a query graph Q and a data graph G, respectively, cq is a subclique of
cg if and only if (1) Num(cq) 6 Num(cg); (2) SumLS(cq) 6 SumLS(cg); and (3) "li 2 LS(cq), $lj 2 LS(cg) and li = lj and the
corresponding degree list {di1,di2, . . . ,dik} of LS(cq) is a presequence of the corresponding degree list {dj1,dj2, . . . ,djt} of LS(cg).

If cq is a subclique of cg, cq is subgraph isomorphic to cg, and we can also say cg is a superclique of cq, which is denoted as
cq @ cg.

Lemma 1. If Q is subgraph isomorphic to G, each subgraph of Q must be subgraph isomorphic to the corresponding subgraph of G.

This is similar to the Apriori property in the frequent pattern mining [1]. On the basis of Lemma 1, if Q is subgraph isomorphic
to G and there is a clique cq in Q, the data graph G must contain one superclique of cq at least; otherwise Q is not subgraph
isomorphic to G. So we can locate the possible matches according to the cliques when they exist in Q.
4.2. Index construction

There are two factors needed to be considered in the index construction. On one hand, an important step is to find the
candidates efficiently for a clique in the query graph, we should devise an effective index to facilitate the query processing.
On the other hand, the local structural information around each clique, which is required in the verification processing,
should be preserved. Hence, we devise an inverted index for cliques, which consists of two parts.

According to Definition 8, given a clique cq in Q and a candidate clique cg in G, cg must contain all the labels that cq con-
tains. A straightforward method is to index the cliques in G with all the labels of a clique being the key entry. However, the
method is expensive in terms of space cost especially when the data graph G is dense and contains a large number of cliques.

W. Zheng et al. / Information Sciences 261 (2014) 116–131 121
Thus, we propose an efficient inverted index in terms of both time and space cost as shown Fig. 3(a). Specifically, each
element of the first part index is a key-value pair, where vertex label l is the key and the cliques containing the corresponding
label are the value, denoted as I(l). Using the inverted index, we can easily obtain the candidate cliques through Eq. (1),
where cand(cq) represents the candidate cliques of cq.
candðcqÞ ¼
\
l2cq

IðlÞ ð1Þ
In order to preserve the local structural information, we record the entrance and neighborhood vertices of each maximal
clique as depicted in Fig. 3(b). The entrance vertices of a maximal clique c are the vertices that have at least one neighbor
vertex out of the clique, denoted as EN(c). The neighborhood vertices of a maximal clique c are the neighbors of c’s entrance
vertices, which are not included in clique c. For example, the entrance vertices of clique c1 in Fig. 1 are EN(c1) = {u1, u3, u7},
and its neighborhood vertices are NB(c1) = {u4, u6}. Furthermore, we also record the neighborhood maximal cliques of each
vertex if any.

Considering that the issue of how to enumerate all the maximal cliques in a graph is not our contribution, so we imple-
ment a method proposed in the existing study [31]. To make our paper self-contained, we introduce its main idea here. The
search process maintains two sets, CMC (the current maximal clique) and SUBG (candidate vertices to be expanded). Initially,
CMC is equal to Ø, and SUBG is equal to V. In the expanding process, choose a vertex v 2 SUBG each time, then CMC = CMC [v,
and SUBG = SUBG \ NB(v), where NB(v) is the neighbor set of vertex v. CMC is expanded iteratively until SUBG is equal to Ø. In
addition, there are some pruning strategies to reduce the search space [21,11,8,30]. After mining all maximal cliques, there
are no completely dense regions if each maximal clique is viewed as a vertex, and we call the graph condensed graph.

4.2.1. Time complexity
Since SQBC needs to invoke the operation of mining all the maximal cliques in a graph, its time complexity of offline pro-

cessing depends on the complexity of enumerating maximal cliques. In the worst case, listing all maximal cliques may re-
quire exponential time as there exist graphs with exponentially many maximal cliques [31]. Actually, it is not uncomputable
in real graphs. Provided that the average degree is d, listing the maximal cliques containing a vertex v requires O(d!) running
time according to the algorithm aforementioned. Thus, the average time complexity of mining all the maximal cliques is
O(n � d!). SING [20] employs paths of bounded length as features. In addition, it also preserves the position information of
these features. The index of NOVA [42] is a structured as a multi-dimensional vector signature consisting of the label distri-
bution of neighborhood vertices. During the index construction phase, QuickSI [23] requires to mine tree features and orga-
nize them as a prefix tree. It is obvious that building indices of SING, NVOA and QuickSI are time and space consuming
especially in large and dense graphs. SMS [40] does not employ any structure features, such as subgraphs, trees or paths.
Hence, it is time efficient to encode each vertex in its offline phase.
5. Query processing

In this section, we discuss the query process based on the index constructed as aforementioned. Given a query graph Q,
we generate vertex codes and clique codes, according to the method in the previous section.

A pair of matching sequences SMQ and SMG are maintained to store the partially matched vertices during query process-
ing. For example, Fig. 4 shows a match of Q by matching sequences SMQ and SMG. In the traditional subgraph isomorphism
algorithms, such as VF2 algorithm [4], one vertex is matched at a time. There may exist many cliques in dense data graphs.
Based on these cliques, we can optimize subgraph isomorphism algorithm by matching several vertices at a time. For the
ease of presentation, we consider two scenarios of Q, i.e., Q contains cliques or not.

5.1. Process of queries without cliques

At the very beginning of the query process, if there are no cliques in Q, the vertex with the largest degree is considered
preferentially, which is pushed into the matching sequence SMQ together with its neighbors.

Initially, for each vertex v in a query graph, we need to find candidate vertices matching v. Before presenting the strategy
to compute candidates, we introduce a definition prior vertex.
Fig. 3. Inverted index.

SMQ:

SNP(v4) ={2,3,1}

v1 v6 v5 v2 v4 v3

current vertex

SMG: u3 u1 u7 u4 u6 u5

current candidate SNP(u6) ={2,3,1}

Fig. 4. SNP of current vertices in Q and G.

122 W. Zheng et al. / Information Sciences 261 (2014) 116–131
Definition 9 (Prior Vertex). In the match sequence, the prior vertex of v is the vertex that is firstly pushed into SMQ (or SMG)
among the neighbor vertices of v.

According to Definition 9, each vertex has a prior vertex except for the first vertex in the matching sequence. The neighbor
vertices and all Supervertices (Definition 6) of v are denoted as NB(v) and SP(v), respectively. During the query processing,
assume that the current vertex to be matched in a query graph Q is vi, and the priori vertex of vi is vj, which has been matched
with vertex uj in G, the candidate vertices that can match vi (denoted as CV(vi)) is computed by the following equation.
CVðv iÞ ¼ NBðujÞ
\

SPðv iÞ ð2Þ
where NB(uj) denotes neighbor vertices of vertex uj, and SP(vi) denotes supervertices of vi in data graph G.
Let us consider query Q and graph G in Fig. 1. Assume that vertex v1 (in Q) has been matched to u3, as shown in SMQ and

SMG in Fig. 4. Now, the candidates of v6 that is a neighbor of v1 are CV(v6) = NB(u3)
T

SP(v6) = {u1}.
Obtaining the candidate vertices of v, the process proceeds in depth-first manner iteratively. Each time, we choose one

vertex u 2 CV(v), and try to push u into the match sequence SMG. Before pushing the partial match into match sequences,
we need to perform verification as follows.

As we know, if a vertex u in G matches with v in Q, the structural information around v should be preserved around u. In
this paper, we propose to use one-step neighborhood information to verify v’s candidates. On one hand, we check the neigh-
borhood matched information of u. On the other hand, we also consider the unmatched information so as to filter out as
many false alarms as possible. Formally, we give a definition based on which the verification processing can be performed
efficiently.

Definition 10 (Sequence Number of Position). Given a graph Q and its match sequence SMQ, Sequence Number of Position of
the current vertex v to be matched is a sequence of number, denoted as SNP(v) = {s1,s2, . . . ,sn,m}, where s1,s2, . . . ,sn are the
positions of v’s neighbors that have been matched in SMQ, and s1 < s2 < � � � < sn, and m is the number of v’s neighbors that have
not been matched.

It is easy to build SNP(v) for vertex v. We only need to record the position of a vertex when it is pushed into the matching
sequence. Hence, it is straightforward to obtain SNP(v) by traversing the neighbors of vertex v. Similarly, we can also define
and build the sequence number of position for vertices in G. Based on SNP(v), we acquire the following lemma to filter out
false alarms.

Lemma 2. Given two vertices v and u in Q and G respectively, SNP(v) = {s1, s2, . . . , sn, m1}, SNP(u) = {t1, t2, . . . , tk, m2}, v matches u if
and only if (1) {s1, s2, . . . , sn} is a subsequence of {t1, t2, . . . , tk} and (2) m1 6m2.
Proof. (1) If {s1,s2, . . . ,sn} is not a subsequence of {t1, t2, . . . , tk}, the former sequence must contain at least one element si that
is not contained in the latter subsequence. It means that some neighbors of u cannot match with si. Therefore, u cannot
match with v. (2) If v’s unmatched neighbors are more than u’s unmatched neighbors, vertex v must contain at least one
neighbor vj thatcannot be matched with any neighbor of u. Therefore, much unnecessary work can be avoided, and the query
efficiency improves a lot. h
Example 3. If the current vertex to be matched is v4, SMQ and SMG for the graphs Q and G (in Fig. 1) are shown as Fig. 2,
where u6 is a candidate vertex to match v4. SNP(v4) = {2,3,1}, SNP(u6) = {2,3,1}. According to Lemma 2, we conclude that
v4 can match u6.

After matching the current vertex in SMQ, all its neighbors that are not in SMQ are pushed into the sequence. When all
vertices of Q have been matched, a match between Q and G is found.

Lemma 3. When the number of the matched vertices in SMQ is equal to jQj, the pair of match sequence SMQ and SMG is a match
mapping between Q and G.

W. Zheng et al. / Information Sciences 261 (2014) 116–131 123
Proof. When jSMQj = 1, it is obvious that the vertex in SMG matches the vertex in SMQ. Supposing that when jSMQj = k and
the subgraph consisting of the vertices in SMQ matches the corresponding subgraph consisting of the vertices in SMG. When
jSMQj = k + 1 and the next vertex to be matched is vk+1, according to Lemma 2 all the information of the candidates is checked
after matching vk+1. So the subgraph consisting of the vertices in SMQ matches the subgraph consisting of the vertices in SMG
when jSMQj = k + 1. According to the principle of mathematical induction, Lemma 3 is proved. h

As shown in this section, our algorithm combines filtering and verification together so that false positive candidates can
be avoided as earlier as possible.

Like traditional subgraph isomorphism algorithm, in the above match processing, one vertex is matched at a time. In or-
der to improve query performance, in our algorithm, several vertices in Q can be matched at the same time by utilizing max-
imal cliques in G. Algorithm 1 shows the details.

Algorithm 1. PQwithoutMC(G, Q, SMQ, SMG, i)

Require: Target Graph G, query graph Q, SMQ, the position i of current vertex v0 to be matched in SMQ, candidate vertex
u0 of v0.

Ensure: SMG.
1: v0 the vertex at SMQ[i]

2: Obtain all the candidates CV(v0) of v0 by Eq. (2)
3: for each u0 2 CV(v0) do
4: if u0 does not exist in any clique then
5: push u0 into SMG
6: PQwithoutMC(G, Q, SMQ, i + 1)
7: else
8: c the largest maximal clique that contain u0

9: j the size of c
10: n 2
11: if i + n > jSMQj then
12: n jSMQj � i
13: end if
14: S SMQ[i] . . . SMQ[i+n�2]

15: push the possible match of S within c into SMG
16: PQwithoutMC(G, Q, SMQ, i + n � 1) and the search space of SMQ[i+n�1] does not contian the vertices in c
17: S SMQ[i] . . . SMQ[i+n�1]

18: if the label set of S j the label set of c then
19: push the possible match of S within c into SMG
20: PQwithoutMC(G, Q, SMQ, i + n)
21: n n + 1
22: if n 6j then
23: goto step 11
24: end if
25: end if
26: end if
27: end for

When trying to match with a vertex v in Q, we examine whether its candidate u is included in some maximal clique. If u is
included in some maximal clique, we will match several vertices together gradually (Steps 17–24 in Algorithm 1). Mean-
while, to ensure that the results are complete, we need to consider the matches in which a substructure consists of some
vertices within a clique c and others outside c (Steps 14–16). Specifically, assume that v (in Q) matches with u (in G) and
u is included in a maximal clique c. v’s successors in SMQ are denoted as v 01; . . . ;v 0n. We divided the whole search space into
several parts:

1. v matches with u and v 01 does not match with any vertex in c;
2. v matches with u and fv 01g matches with some vertex in c and none of fv 02; . . . ;v 0ng matches with any vertex in c;
3. v matches with u and fv 01;v 02g match with some vertices in c and none of fv 03; . . . ;v 0ng matches with any vertex in c;
4.

Note that, it is easy to determine whether a subgraph of Q is subgraph isomorphic to a clique c in G, since we only need to
perform an inclusion query. For example, given a query graph Q and a data graph G in Fig. 1. The current vertex to be
matched is v1, and its candidate is u3. v1’s neighbors are also pushed into match sequence SMQ, and v1’s successors in
SMQ are {v6, v5, v2, v4}. Noted that u1 is included in maximal clique c1, several branches need to be dealt with as follows.

124 W. Zheng et al. / Information Sciences 261 (2014) 116–131
1. Match v1 with u3 and v6 cannot match any vertex in clique c1. In this case, there is no candidate that can match v6, since
there exists no vertex (out of c1) that is adjacent to u3 is a supervertex (see Definition 6) of v6. The search branch is
terminated.

2. We try to match {v1, v6} with some vertices in clique c1 and other v1’s successors match vertices outside of c1. The label set
Sq = {c, a} of {v1, v6} and the label set Sc = {a, b, c, d} of c1. Since Sq j Sc, thus, we push a possible match (u3, u1) of (v1, v6) into
SMG. Then, the search space for v5 does not include clique c1. In this case, there is no candidate can match v5. The search
branch is terminated.

3. We try to match {v1, v6, v5} to some vertices in clique c1 and other v1’s successors match vertices outside of c1. The label
set Sq = {c, a, b} of {v1, v6, v5}, the label set Sc = {a, b, c, d} of c1. Sq j Sc. So we push a possible match (u3, u1, u7) of (v1, v6, v5)
into SMG. At this time, the search space for v2 does not include c1. In this case, we can find one candidate vertex u4 that can
match v2. Thus, this search branch will be continued.

4. We try to match {v1, v6, v5, v2} to some vertices in clique c1. The label set Sq = {c, a, b, a} of [v1, v6, v5, v2], the label set Sc = {a,
b, c, d} of c1. Sq " Sc. So there is no any match of [v1, v6, v5, v2] in c1. Thus, this search branch is terminated.

The optimization technique will speed up finding candidate partial matching sequences, since it can consider several ver-
tices in a query graph Q at a time, when there exist cliques. When we find the partial sequences, we also need to do the ver-
ification according to Lemma 2.
5.1.1. Time complexity
Since the problem of subgraph isomorphism have proven to be NP-complete [32]. In worst case, all of these methods,

such as SQBC, SMS, SING, and NOVA, have the exponential running time complexity. However, SING adopts the VF2 [4] algo-
rithm in the verification phase. SMS and NOVA also employ state expanding methods that is trying to speed up the isomor-
phic enumeration. Nevertheless, SING, SMS and NOVA try to match only a vertex at each partial state. In comparison,
utilizing clique features SQBC may match several vertices together at each partial state, which improves the searching
efficiency.
5.2. Process of queries with cliques

Generally speaking, we have the analog approach when query graphs contain cliques. The main differences lies in the
method of computing candidates and the vertex sequence pushed into SMQ.

Given a query graph Q having a clique, we can locate matches of Q in G based on the maximal cliques. Different from the
former case, if there are some cliques in the query graph Q, at the very beginning, we select the clique c with largest size,
because the clique with largest size may have less candidates. All the vertices of the selected clique are pushed into the
match sequence SMQ. At this time, all their neighbors those do not exist in SMQ yet are pushed into SMQ.

When the current vertex vi to be matched in SMQ is in a maximal clique c, its priori vertex and supervertexes are vj and
SP(vi). Assume that the current vertex matching to vj is uj and the set of vertices in c’s supercliques is SPC(c). The candidate set
CV(vi) of vi can be computed by Eq. (3). Beyond that, nothing else information about vertex vi need to be checked.
CVðv iÞ ¼ NBðujÞ
\

SPðv iÞ
\

SPCðcÞ ð3Þ

The rest processes are same with that of queries without maximal cliques. It is clear that we can reduce the search space if

the query graph contains cliques. Moreover, we do not need to verify the candidates for vertices (in Q) contained in cliques,
because we have checked all the structural and label information around these vertices when we compute their candidates
as Eq. (3). Undoubtedly, this will speed up the verification processing.
6. Experimental results

In the section, we evaluate our algorithm (denoted as SQBC) over both synthetic and real datasets. As presented in latest
study [15], GADDI [36], SPath [38] and QuickSI [23] are state-of-the-art methods dealing with exact subgraph query over a
single large graph. Actually, we have compared SMS with GADDI, SPath and NOVA in [40], and confirm that SMS outperforms
these methods significantly. Thus, we compare SQBC with QuickSI [23] (also denoted as QSI), SMS [40] and SING [20] in this
paper. SING employs path structures as its index, which does not incorporate encoding of vertices. SMS is our previous work,
in which, we do not consider clique features. Our methods have been implemented using standard C++. The executable code
of SING is provided by its authors. We also implement the algorithm QuickSI in our best effort. All experiments are conducted
on a P4 3.0 GHz machine with 2Gbytes RAM running Linux and 250 GB SATA disk.
6.1. Datasets

To confirm the effectiveness and efficiency of our method, we adopt two synthetic and two real datasets in our experi-
ments. These datasets have different characteristics as described in following sections.

W. Zheng et al. / Information Sciences 261 (2014) 116–131 125
6.1.1. Synthetic datasets

(a) Erdos Renyi (ER) Model. ER model is a classical random graph model, which defines a random graph as N vertices con-
nected by M edges, chosen randomly from N(N � 1)/2 possible edges. In experiments, we generate a set of small
graphs and a large graph. The size of small graphs varies from 1K to 10K. The default average degree is set to be 4.
The large graph is composite of 500K vertices and 2.4 million edges.

(b) Scale-Free (SF) Model. A scale-free network is a network whose degree distribution follows a power law distribution. It
means that the fraction P(k) of vertices having k neighbors in the network. We use the graph generator gengraphwin
(http://www.cs.sunysb.edu/�algorith/implement/viger/distrib/) to generate a set of small graphs and a large graph.
This dataset is denoted as SF. The numbers of vertices in small graphs are varied from 1K to 10K, and the default aver-
age degree is set to be 9. The large graph is composed of 500K vertices and 2,289,867 edges.

6.1.2. Real datasets

(a) HPRD is a human protein interaction network consisting of 9460 vertices, 34,998 edges and 307 vertex labels, in which
the labels are the GO term descriptions.

(b) BioGRID is a freely accessible online interaction repository with data compiled from major model organism species by
searching publications, and it is available at http://thebiogrid.org/. We download the release Build Statistics (3.1.83)
December 2011, and use all the organisms. It consists of 36,078 proteins and 298,819 raw protein and genetic
interactions.

(c) Yago is an RDF dataset. The RDF (Resource Description Framework) is a standard data model to describe resources on
the Web and enables data exchange and richer integration. In RDF, data items are represented in the form of triples
(subject, predicate, object), where vertices correspond to subjects and objects, and edges correspond to predicates
[13]. Yago [26] is a RDF knowledge base which is automatically extracted from Wikipedia1 and WordNet.2 We keep
the entities and the relationships between entities in the original Yago dataset, and randomly select one rdf:type from
all the rdf:types incident to an entity as the label of this entity. There are 368,587 vertices, 527,934 edges and 45,450 ver-
tex labels in Yago graph. The edge labels and direction are ignored in our experiments.

6.2. Experimental results

We evaluate the proposed method in this paper over the datasets as presented above, and report the offline performance,
online query response time, and the scalability in terms of query graph size (the number of vertices in a graph).
6.2.1. Experiments on synthetic datasets
To prove the efficiency of SQBC, we conduct the experiments over the set of small graphs of both ER and SF compared

with SING, QuickSI and SMS. In this experiment, we fix the size of query graphs, and vary the size of database graphs from
1K to 10K. Firstly, we generate a graph consisting of 10,000 vertices, and then randomly extract a connected graph consisting
9000 vertices from this 10K dataset. Iteratively, we generate xK dataset from (x + 1)K dataset, where 1 6 x 6 9.

First, we generate a set of uniform query graphs, which indicates that the query graphs for each dataset is the same set of
queries. This set of queries is generated from 1K dataset in the following way. Randomly choose one of its vertices v. Starting
from v, proceed in a iterative way: (I) Every time, randomly choose one vertex vi, which is one of the selected vertices.
(II) And then randomly choosing x neighbors of vi where 1 6 x 6 jNB(vi)j(jNB(vi)j is the size of NB(vi)). The process stops until
a fixed total number vertices is reached. This yields groups of 100 queries having 20 vertices for ER and SF datasets. We per-
form these queries for each method and average their response time.

The consumed time by these methods is summarized in Fig. 5. The horizontal axes represent the size of the data (ER and
SF) graphs, which vary from 1K to 10K Fig. 5(a) is the query response time (in milliseconds) over ER dataset. Note that, in
Fig. 5(a), SING fails to return the answers since it runs out memory when dealing with 10K dataset. It shows that the query
response time of SQBC over ER datasets is less than 1 ms. Undoubtedly, SQBC outperforms SING, QuickSI and SMS greatly.
What is more,the performance lines of SMS and SQBC are almost horizontal demonstrating that our algorithms have a good
scalability as jV(G)j increases. In contrast, the query response time of SING and QuickSI both increase significantly with jV(G)j
increasing.

Fig. 5(b) is the query results over SF graphs. There are two vertical axes in Fig. 5(b), where the left one indicates the query
response time (in milliseconds) and the right one indicates the number of matches. As expected, both the query response
time and the number of matches increase as the size of dataset increases. Moreover, the performance gap between QuickSI
and our methods (SMS and SQBC) also increases. Noted that there is no query response time by SING for the dataset of SF
because it runs out of memory during the index construction phase.
1 http://en.wikipedia.org/wiki/Main_Page.
2 http://wordnet.princeton.edu/.

1K 2K 3K 4K 5K 6K 7K 8K 9K 10K
10−2

10−1

100

101

102

103

ER |V(G)|

Q
ue

ry
 R

es
po

ns
e

Ti
m

e
(in

 m
s)

SING
QSI
SMS
SQBC

(a) ER Graphs

1K 2K 3K 4K 5K 6K 7K 8K 9K 10K

0.1

1

10

100

500

Q
ue

ry
 R

es
po

ns
e

Ti
m

e
(in

 m
s)

SF |V(G)|

1

10
20

100

N
um

be
r o

f M
at

ch
es

QSI

SMS

SQBC

matchNum

(b) SF Graphs

Fig. 5. Query results over ER and SF graphs.

126 W. Zheng et al. / Information Sciences 261 (2014) 116–131
We also perform some experiments to study the factors impacting the query performance. In this experiment, we use the
same datasets as the former experiment, but adopt different query graphs. For each dataset (ER1K � ER10K, SF1K � SF10K),
we randomly extract 100 subgraphs having 20 vertices from the corresponding dataset as its query graphs.

Fig. 6 presents the results over SF datasets, where Fig. 6(a) reports the query response time and number of matches. Gen-
erally, the larger the size of database graph is, the more time will be consumed. However, as shown in Fig. 6(a), the query
response time maybe less even if the database graph is larger. For example, the query response time over SF10K is less than
that of SF9K, one of the possible reasons is that the number of matches of the corresponding query over SF10K is less. But the
query performance may not decrease even though the number of matches increases. As an example, the number of matches
over SF9K is more than that over SF8K, but the query response time over SF9K is less than that over SF8K. To study the under-
lying reason, we compute the ratio of common vertices and edges for these matches, denoted as cs, which is defined as Eq.
(4). In Eq. (4), jV(q)j and jE(q)j are the number of vertices and edges in the query graph Q respectively, m is the number of
matches, jVdj and jEdj are the number of distinct vertices and edges in the matches respectively. Obviously, the more common
structures (vertices and edges) the matches share, the larger is cs. Fig. 6(b) reports the ratio of common structures for the
corresponding queries over each dataset. As depicted in Fig. 6(b), the matches over SF9K share many substructures which
can save much time, but the matches over SF8K share less substructures (see Fig. 7).
cs ¼ 1� jVdj þ jEdj
ðjVðQÞj þ jEðQÞjÞ �m ð4Þ
Hence, there are three possible factors affecting the query response time. First, the size of data graphs. With a fixed query
graph, the response time consumed over a larger data graph is biased to be more than that of a small data graph, since it is
1K 2K 3K 4K 5K 6K 7K 8K 9K 10K

0.1

1

10

100

500

Q
ue

ry
 R

es
po

ns
e

Ti
m

e
(in

 m
s)

SF |V(G)|

1

10
20

100

N
um

be
r o

f M
at

ch
es

QSI

SMS

SQBC

matchNum

(a) SF Graphs

1K 2K 3K 4K 5K 6K 7K 8K 9K 10K
0

20

40

60

80

100

R
at

io
 o

f c
om

m
on

 s
tru

ct
ur

e
(%

)

Dataset
(b) Ratio of common structures

Fig. 6. Query results over ER and SF graphs.

1K 2K 3K 4K 5K 6K 7K 8K 9K 10K
10−2

10−1

100

101

102

103

ER |V(G)|

In
de

x
C

on
st

ru
ct

io
n

Ti
m

e
(in

 s
) SING

QSI

SMS

SQBC

(a) ER Graphs

1K 2K 3K 4K 5K 6K 7K 8K 9K 10K
10−2

10−1

100

101

102

SF |V(G)|

In
de

x
C

on
st

ru
ct

io
n

Ti
m

e
(in

 s
)

QSI
SMS
SQBC

(b) SF Graphs

Fig. 7. Index building time (in seconds) over ER and SF graphs.

W. Zheng et al. / Information Sciences 261 (2014) 116–131 127
probable that the number of candidates in the large data graphs is more than that in the small one. Second, the number of
matches. In general, the more matches exist, the more time will be consumed. Third, the common substructures of the
matches. Straightforwardly, if there are more matches, the consumed time is more. However, this is not always the case.
If many matches share the same substructures, the search space is limited, which may lead to reduce the query time for
delivering all the matches.

Furthermore, the index construction time of SQBC is less than that of SING and QuickSI, but more than that of SMS, which
is shown in Fig. 4. The horizontal axes represent the size of the data (ER and SF) graphs, which varies from 1K to 10K. The
vertical axes represent the index building time in terms of seconds. The index construction time of SING is extremely high
because it enumerates all paths starting from a vertex. QuickSI suffers from the similar problem, for it builds the index based
on frequent tree features of graph database. As presented in the previous section, SQBC needs to compute all the maximal
cliques, which degrades the index building performance compared to SMS.
6.2.2. Experiments on real datasets
In the experiment, we use HPRD, BioGRID and Yago as real database graphs, which are larger and more complex. The

query graphs are generated in the same way as described in the previous section. However, we fix the database graphs,
and vary the size of query graphs from 10 to 100. For the query graphs of each size, we generate 100 graphs, and average
the response time for each set of queries. The corresponding results are shown in Fig. 8.

As all these database graphs are larger, SING fails to return the answers. There are two y-axes on both left and right side in
Fig. 8(a) and (c). The dotted line which represents the number of matches is in the right axis. As depicted in Fig. 8(c), the
query performance lines of SQBC and SMS rise and fall as the number of matches fluctuates, since these two algorithms both
combine the filter and verification operations together, and their search process proceed in depth-first manner, which makes
it possible that the search time is less even with more matches if they share the same substructures. Compared to SMS per-
formance line, the fluctuation of SQBC performance line is more obvious due to the clique feature employed in SQBC. When
the query graphs or the matches contain some cliques, the search space and the computational cost of verification operation
can be reduced further. Besides the possible factors (the size of data graphs, the number of matches, the common substruc-
tures of the matches) that impact the query performance discussed in the former section, the size of query graph also im-
pacts the query performance because it need much more information to be verified for query graphs of large size.

Table 2 shows the index building time of SQB, SMS and QuickSI over the datasets of HPRD, BioGRID, Yago, ER500K and
SF500K. The first column are the algorithms SQBC, SMS and QuickSI, and the first row are the datasets. ‘‘–’’ in the last
row indicates that QuickSI cannot run over the corresponding datasets in our experiments for their heavy indices.

It is obvious that the query performance of SQBC is more efficient than that of SMS and QuickSI. However, the index con-
struction time of SQBC is less than that of QuickSI, but more than that of SMS.

To analyze the possible reasons that SQBC outperforms other algorithms, we compute the clique coverage rate (ccr) of
HPRD, BioGRID and Yago, as shown in Table 3. The clique coverage rate is defined as the proportion of the vertices existing
in at least one clique that consists of at least three vertices. The ccrs of HPRD and BioGRID are 44% and 37% respectively,
which implies that there are many cliques in biological datasets. The index based on the mining of cliques is significant. Note
that, the ccr of Yago is relatively low, because each entity in the dataset used in our experiments keeps only one rdf:type. In
addtion, we compute the proportion of the vertices that exist in at least one clique to all vertices in matches, denoted as
pvcm. The average pvcms of HPRD and BioGRID are 83.3% and 65.6% respectively, which means that most matching vertices
exist in at least one clique. Thus, the clique-based optimization technique can speed up query processing.

10 20 30 40 50 60 70 80 90 100
10−2

10−1

100

101

102

103

104

HPRD |V(Q)|

Q
ue

ry
 R

es
po

ns
e

Ti
m

e
(in

 m
s)

QSI
SMS
SQBC

(a) HPRD Graph

10 20 30 40 50 60 70 80 90 100
10−2

10−1

100

101

102

103

104

BioGRID |V(Q)|

Q
ue

ry
 R

es
po

ns
e

Ti
m

e
(in

 m
s)

QSI
SMS
SQBC

(b) BioGRID Graph

10 20 30 40 50 60 70 80 90 100
10−1

100

101

102

YAGO |V(Q)|

Q
ue

ry
 R

es
po

ns
e

Ti
m

e
(in

 m
s)

SMS
SQBC

(c) YAGO Graph

Fig. 8. Query response time (in milliseconds) over HPRD, BioGRID and YAGO graphs.

Table 2
Index building time.

Algorithm HPRD BioGRID Yago ER500K SF500K

SQBC 0 s 628,666 ls 16 s 572,097 ls 194 s 262,701 ls 681 s 677,540 ls 803 s 232,577 ls
SMS 0 s 143,063 ls 0 s 950,985 ls 2 s 878,424 ls 15 s 294,909 ls 14 s 140,946 ls
QSI 2.3 s 56,200 ls 19 s 521,450 ls – – –

128 W. Zheng et al. / Information Sciences 261 (2014) 116–131
6.2.3. Experiments on large datasets
To further study the efficiency and scalability of our algorithm, we fix the database to be ER500K and SF500K, and vary the

size of query graph from 10 to 100. The query graphs are randomly generated from the two datasets in the same way as
adopted in the former section. The algorithms SING and QuickSI cannot run over these two datasets in our experiments
for their heavy indices.

Fig. 9 shows the query performance over these two datasets. There are two y-axes in each Fig. 9(a) and (b), where the
dotted lines represent the number of matches for the corresponding queries. It indicates that the query response time shows
a growing trend as the size of query graphs increases. Notice that, SQBC outperforms SMS by one order of magnitude as to
some queries, and the fluctuation of SQBC performance line is more obvious than that of SMS performance line. As discussed
in the former section, one main reason is that the query graphs or the matches contain some cliques, which reduces the
search space and the computational cost of verification operation during the search process of SQBC. However, SMS is insen-
sitive to the cliques in the query graphs or the matches, because it only utilize the neighborhood information of vertices. As
displayed in Fig. 9, SQBC has shown high performance that the query response time is only near 1 ms even for the queries of
size 100, which means it can work efficiently over both ER and SF graphs.

Table 3
The clique coverage rate (CCR) of real datasets.

Datasets HPRD BioGRID Yago

CCR 44% 37% 17.4%

10 20 30 40 50 60 70 80 90 100
10−1

100

101

ER500K |V(Q)|

Q
ue

ry
 R

es
po

ns
e

Ti
m

e
(in

 m
s)

SMS
SQBC

(a) ER500K Graph

10 20 30 40 50 60 70 80 90 100
10−2

10−1

100

SF500K |V(Q)|
Q

ue
ry

 R
es

po
ns

e
Ti

m
e

(in
 m

s)

SMS
SQBC

(b) SF500K Graph

Fig. 9. Query response time (in milliseconds) over ER500K and SF500K graphs.

W. Zheng et al. / Information Sciences 261 (2014) 116–131 129
The index building time over these two datasets are shown in Table 1. Similar to that over other datasets, SMS is more
efficient than SQBC in the index construction phase.
7. Discussion

As shown in the previous section, SING fails to answer the query in our experiments when the database graph is large and
dense. Since SING considers all paths starting from a vertex producing an explosion of features in terms of the number, the
space requirement of SING is costly. Moreover, the process of index construction is computationally expensive especially
when it comes to deal with large and dense graphs. The heavy index also keeps the query performance of SING limited in
the filtering phase.

QuickSI defines the Swift-Index which is a prefix tree. It needs to pre-compute the frequent trees as structural features,
and determines the search order for the query graph q. So QuickSI does not work well enough over large and dense graphs,
which has been proved in our experiments. SMS does not employ any feature structure, so its preprocessing time is least.
HPRD BioGRID YAGO ER500K SF500K
100

101

102

103

104

105

106

Dataset

Ti
m

e
C

on
su

m
ed

 (m
s)

Clique Mining
Other Operations

(a) Consumed Time

HPRD BioGRID YAGO ER500K SF500K
0

10

20

30

40

50

60

70

80

90

100

Dataset

Pe
rc

en
ta

ge
 (%

) Clique Mining
Other Operations

(b) Percentage

Fig. 10. Time consumed by maximal clique mining and the other operations.

130 W. Zheng et al. / Information Sciences 261 (2014) 116–131
SQBC outperforms SMS and SING in terms of the query response performance, due to the feature selection of maximal clique.
The maximal clique is used to reduce the search space. What is more, the isomorphism test over two cliques is easily ver-
ifiable as discussed in the section of maximal clique feature. Consequently, it facilitates the filtering operation. However, the
index building performance of SQBC is less efficient than that of SMS, because the process of mining all the maximal cliques
during the preprocessing phase is costly in terms of time. So we divide the index building phase into two parts: maximal
clique mining and all the rest operations except maximal clique mining. Fig. 10(a) shows the time consumed by the maximal
clique mining and the other operations in the index building phase. Fig. 10(b) displays the percentage occupied by these two
parts respectively. Obviously, The operation of maximal clique mining accounts for most of index construction time, espe-
cially when the data graphs are large and dense. So if we want to improve the preprocessing efficiency, a more efficient algo-
rithm of mining maximal cliques needs to be designed. There are many existing literatures focus on this issue
[21,11,8,19,12,30,31,29].

In the query processing, we introduce a new strategy, which combines the filtering and verification operation together so
that many false positives can be avoided. During the iteration, the search space decreases fast. As expectation in Section 4.2,
the experiment results show that the query performance of SQBC outperforms that of SMS with structure feature employ-
ment at the expense of increasing the preprocessing time. As discussed in the previous section, the main factors impacting
the query response performance are: the size of data graphs, the size of query graphs, the amount of matches, the common
substructures shared by matches, and the maximal cliques in the query and data graphs.

To summarize, SQBC is the best choice when the query graph or the data graph is dense, or the size of query graph set is
large. Because we can only build the index once, based on which the set of query graphs are performed efficiently. Otherwise,
SMS is more appropriate.

8. Conclusions

In this paper, we have proposed a new subgraph match algorithm over large and dense graphs called SQBC. It employs the
structure of maximal cliques to reduce the search space. Clique code and vertex code are carefully designed based on the
locality information. What is more, the new verification strategy is integrated into the framework. Though the index building
time of SQBC is a little more than the time consumed by SMS, extensive experiments over real and synthetic datasets have
shown that SQBC outperforms the most popular competitors including SMS, QuickSI, and SING greatly in terms of online
query efficiency.

Besides the problem presented in this paper, the study of approximate subgraph match, subgraph query over probabilistic
graphs and subgraph query over graphs updating frequently are meaningful, interesting and challenging. We will focus on
these problems in the future work.

Acknowledgements

This work was supported by NSFC under Grants 61370055, 61272344 and China 863 Project under Grant No.
2012AA011101. Lei Zou’s work was also supported by CCF-Tencent Open Research Fund.

References

[1] R. Agrawal, R. Srikant, Fast algorithms for mining association rules in large databases, in: VLDB, 1994, pp. 487–499.
[2] J.E. Beasley, N. Christofides, Theory and methodology: vehicle routing with a sparse feasibility graph, Eur. J. Oper. Res. 98 (3) (1997).
[3] J. Cheng, Y. Ke, W. Ng, A. Lu, Fg-index: towards verification-free query processing on graph databases, in: SIGMOD Conference, 2007, pp. 857–872.
[4] L.P. Cordella, P. Foggia, C. Sansone, M. Vento, A (sub)graph isomorphism algorithm for matching large graphs, IEEE Trans. Pattern Anal. Mach. Intell. 26

(10) (2004) 1367–1372.
[5] B. Dost, T. Shlomi, N. Gupta, E. Ruppin, V. Bafna, R. Sharan, Qnet: a tool for querying protein interaction networks, J. Comput. Biol. 15 (7) (2008) 913–

925.
[6] B. Gedik, K.-L. Wu, P.S. Yu, L. Liu, A load shedding framework and optimizations for m-way windowed stream joins, in: ICDE, 2007, pp. 536–545.
[7] R. Giugno, D. Shasha, Graphgrep: a fast and universal method for querying graphs, in: ICPR (2), 2002, pp. 112–115.
[8] A. Grosso, M. Locatelli, W.J. Pullan, Simple ingredients leading to very efficient heuristics for the maximum clique problem, J. Heuristics 14 (6) (2008)

587–612.
[9] H. He, A.K. Singh, Closure-tree: an index structure for graph queries, in: ICDE, 2006, p. 38.

[10] T. Horváth, J. Ramon, S. Wrobel, Frequent subgraph mining in outerplanar graphs, Data Min. Knowl. Discovery 21 (3) (2010) 472–508.
[11] K. Katayama, A. Hamamoto, H. Narihisa, An effective local search for the maximum clique problem, Inform. Process. Lett. 95 (5) (2005) 503–511.
[12] S. Khuller, B. Saha, On finding dense subgraphs, in: ICALP (1), 2009, pp. 597–608.
[13] G. Klyne, J.J. Carroll, Resource description framework (rdf): concepts and abstract syntax, in: W3C Recommendation, 2004.
[14] D. Laney, 3d data management: controlling data volume, velocity and variety, Gartner, 2001.
[15] J. Lee, W.-S. Han, R. Kasperovics, J.H. Lee, An in-depth comparison of subgraph isomorphism algorithms in graph databases, in: PVLDB, 2013.
[16] X. Lian, L. Chen, Efficient query answering in probabilistic rdf graphs, in: SIGMOD Conference, 2011, pp. 157–168.
[17] F. Mandreoli, R. Martoglia, G. Villani, W. Penzo, Flexible query answering on graph-modeled data, in: EDBT, 2009, pp. 216–227.
[18] T. Matsunaga, C. Yonemori, E. Tomita, M. Muramatsu, Clique-based data mining for related genes in a biomedical database, BMC Bioinform. (2009) 10.
[19] N. Modani, K. Dey, Large maximal cliques enumeration in sparse graphs, in: CIKM, 2008, pp. 1377–1378.
[20] R.D. Natale, A. Ferro, R. Giugno, M. Mongiovı̀, A. Pulvirenti, D. Shasha, Sing: subgraph search in non-homogeneous graphs, BMC Bioinform. 11 (2010)

96–110.
[21] P.R.J. Östergård, A fast algorithm for the maximum clique problem, Discr. Appl. Math. 120 (1–3) (2002) 197–207.
[22] R. Samudrala, J. Moult, A graph-theoretic algorithm for comparative modeling of protein structure, J. Mol. Biol. 279 (1) (1998) 287–302.
[23] H. Shang, Y. Zhang, X. Lin, J.X. Yu, Taming verification hardness: an efficient algorithm for testing subgraph isomorphism, PVLDB 1 (1) (2008) 364–375.

W. Zheng et al. / Information Sciences 261 (2014) 116–131 131
[24] D. Shasha, J.T.-L. Wang, R. Giugno, Algorithmics and applications of tree and graph searching, in: PODS, 2002, pp. 39–52.
[25] V. Spirin, L.A. Mirny, Protein complexes and functional modules in molecular networks, in: PNAS, 2003, pp. 12123–12128.
[26] F.M. Suchanek, G. Kasneci, G. Weikum, Yago: a large ontology from wikipedia and wordnet, J. Web Sem. 6 (3) (2008) 203–217.
[27] Y. Tian, R.C. McEachin, C. Santos, D.J. States, J.M. Patel, Saga: a subgraph matching tool for biological graphs, Bioinformatics 23 (2) (2007) 232–239.
[28] Y. Tian, J.M. Patel, Tale: a tool for approximate large graph matching, in: ICDE, 2008, pp. 963–972.
[29] E. Tomita, T. Kameda, An efficient branch-and-bound algorithm for finding a maximum clique with computational experiments, J. Global Optim. 37 (1)

(2007) 95–111.
[30] E. Tomita, Y. Sutani, T. Higashi, S. Takahashi, M. Wakatsuki, A simple and faster branch-and-bound algorithm for finding a maximum clique, in:

WALCOM, 2010, pp. 191–203.
[31] E. Tomita, A. Tanaka, H. Takahashi, The worst-case time complexity for generating all maximal cliques and computational experiments, Theor. Comput.

Sci. 363 (1) (2006) 28–42.
[32] J.R. Ullmann, An algorithm for subgraph isomorphism, J. ACM 23 (1) (1976) 31–42.
[33] D.J. Watts, P.S. Dodds, M.E.J. Newman, Identity and search in social networks, Science 29 (5571) (2002).
[34] D.W. Williams, J. Huan, W. Wang, Graph database indexing using structured graph decomposition, in: ICDE, 2007, pp. 976–985.
[35] S. Zhang, M. Hu, J. Yang, Treepi: A novel graph indexing method, in: ICDE, 2007, pp. 966–975.
[36] S. Zhang, S. Li, J. Yang, Gaddi: distance index based subgraph matching in biological networks, in: EDBT, 2009, pp. 192–203.
[37] S. Zhang, J. Yang, W. Jin, Sapper: subgraph indexing and approximate matching in large graphs, PVLDB 3 (1) (2010) 1185–1194.
[38] P. Zhao, J. Han, On graph query optimization in large networks, PVLDB 3 (1) (2010) 340–351.
[39] P. Zhao, J.X. Yu, P.S. Yu, Graph indexing: Tree + delta >= graph, in: VLDB, 2007, pp. 938–949.
[40] W. Zheng, L. Zou, D. Zhao, Answering subgraph queries over large graphs, in: WAIM, 2011, pp. 390–402.
[41] F. Zhu, Q. Qu, D. Lo, X. Yan, J. Han, P.S. Yu, Mining top-k large structural patterns in a massive network, PVLDB 4 (11) (2011) 807–818.
[42] K. Zhu, Y. Zhang, X. Lin, G. Zhu, W. Wang, Nova: a novel and efficient framework for finding subgraph isomorphism mappings in large graphs, in:

DASFAA (1), 2010, pp. 140–154.
[43] L. Zou, L. Chen, J.X. Yu, Y. Lu, A novel spectral coding in a large graph database, in: EDBT, 2008, pp. 181–192.

