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ABSTRACT
Subgraph search is very useful in many real-world applica-
tions. However, users may be overwhelmed by the masses of
matches. In this paper, we propose subgraph skyline search
problem, denoted as S3, to support more complicated anal-
ysis over graph data. Specifically, given a large graph G and
a query graph q, we want to find all the subgraphs g in G,
such that g is graph isomorphic to q and not dominated by
any other subgraphs. In order to improve the efficiency, we
devise a hybrid feature encoding incorporating both struc-
tural and numeric features. Moreover, we present some op-
timizations based on partitioning strategy. We also propose
a skylayer index to facilitate the dynamic subgraph skyline
computation. Extensive experiments over real dataset con-
firm the effectiveness and efficiency of our algorithm.

Categories and Subject Descriptors
H.2.8 [Information Systems]: Database Applications

Keywords
Subgraph Skyline; Feature Encoding; Skylayer

1. INTRODUCTION
Due to the schema-relaxable nature [12], graph has at-

tracted increasing attention these years. A lot of real-world
data (e.g., social network [17], knowledge graph [5], het-
erogenous information network [22], and semantic web [26])
can be represented by graph model. As we know, various
types of researches over graphs have been investigated, such
as shortest path query [2], subgraph search [24], and reach-
ability query [6]. However, effectively and efficiently con-
ducting advanced analysis on graphs, particularly subgraph
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Figure 1: An example of knowledge graph.

skyline analysis as will be addressed in this paper, remains
an open problem.

As a well-known research problem, subgraph search is
meaningful and useful in many applications. For example,
answering SPARQL queries in Semantic Web is actually e-
quivalent to conducting subgraph isomorphism match over
graphs [26]. However, users may be overwhelmed by the
enormous matching results of some queries. Owing to the
different requirements in varieties of applications, it is non-
trivial to design a generic function to measure the“goodness”
of these matches. In this paper, we propose subgraph sky-
line (Def. 5) on large graphs. To the best of our knowledge,
there is no existing study to address this problem.

A knowledge graph is a heterogeneous open-domain re-
source that integrates lots of information in various fields,
such as person, sport, movie, music and so on. Fig. 1 shows
a small fraction of a knowledge graph, where the hollow ver-
tices and their adjacent attributes are numeric vertices and
numeric attributes, respectively. Using a knowledge graph,
we can conduct many interesting subgraph skyline analyses
as follows.

Motivating Example 1. For example, we may find
excellent NBA player partners over the knowledge graph.
Specifically, one player is a“guard”with excellent techniques
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Figure 2: Excellent basketball partner analysis.
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in “assists” and “steals”. The other one is a “forward” with
excellent techniques in “rebounds” and “blocks”. What is
more, these two players are expected to serve in the same
team. This query can be represented by the graph in Fig. 2,
where player1 is a “guard” and player2 is a “forward”. The
vertices labeled with ‘ * ’ are their respective technical s-
tatistics, i.e., the numeric attributes. That is, we want to
find all the partners who are no worse than other partners
in terms of these attributes. Answering this query over the
knowledge graph can find meaningful results. More analyses
using real NBA game records will be reported in Section 6.

Motivating Example 2. As another example, with the
knowledge graph we can also explore the American excel-
lent actors/actresses who are singers as well. Specifically,
the gross of the film that the actor/actress starred in and
the copies of his/her album are expected to be large. Fig. 3
illustrates this query graph. In general, subgraph search
may return lots of matches without considering the numer-
ic values. Hence, subgraph skyline analysis is useful and
interesting over knowledge graph.

?person

gross

artisthasActor copies

USA

bornIn
?album

?film

film
isA

isA
album*

*
Figure 3: Versatile artist analysis.

Motivated by the examples above, we propose the problem
of Subgraph Skyline Search over large graphs (denoted as
S3). Specifically, given a large graph G and a user specified
query graph q which has several numeric attributes, an S3

query returns all the subgraphs in G that are isomorphic to
q and not dominated by any other isomorphic subgraphs in
terms of numeric attributes in q (formally defined in Def. 5).

There are two possible methods to solve the S3 problem.
The first method is to utilize the traditional skyline tech-
niques designed for relational data. However, the input of
these techniques are relational tables, which are non-trivial
to update, i.e., data addition, deletion, and refreshing. In
comparison, the numeric attributes of S3 skyline are online
extracted from subgraphs. More importantly, due to sub-
graph isomorphism constraint of S3 problem, the existing
pruning techniques for traditional skyline may not be em-
ployed directly. For example, entity v1 dominates entity v2
over the numeric attributes specified in the query q. But no
subgraph containing v1 is isomorphic to q. Whereas, entity
v2 is in the skyline without considering v1 and there exists
a subgraph g containing v2 is isomorphic to q. Thus, the
subgraph g should be an answer. Furthermore, the previous
methods for skyline join do not consider any structure con-
straint or the corresponding structural optimization. Hence,
these techniques dedicated to the relational skyline compu-
tation are oblivious to support S3 queries.

The other method resorts to the graph-based strategy.
Although there have been many studies on subgraph queries
[20, 4, 12, 24, 26], none of these works considers the skyline
constraint. A naive idea is to enumerate all subgraphs in
G that are isomorphic to the query graph q, i.e., obtaining
all the candidate subgraphs with the existing techniques.
Then, we can check the dominating relationship and return

true answers. Obviously, this method is inefficient in terms
of response time, because it may generate a large number
of intermediate results, that is, many redundant isomorphic
subgraphs not belonging to the skyline will be exhausted at
the cost of expensive subgraph isomorphism checking.

Considering the observations above, we address three chal-
lenges to answer S3 queries efficiently, and carefully design
the corresponding solutions.

Challenge 1: Dynamic skyline computation. To
answer S3 queries, a crucial task is to compute skyline ac-
cording to the numeric attributes specified in query graphs.
In the worst case, we need to exhaust all the numeric entities
to find the skyline if there is no any optimization measures.
More importantly, when we cannot find any answer with the
current skyline entity v (i.e., v does not satisfy the structural
constraint), we need to dynamically compute skyline enti-
ties, which is computationally expensive.

Challenge 2: Efficient querying on graphs. As dis-
cussed above, we need to check the structural constraint
before reporting the true answers. In order to improve the
time efficiency, we should reduce the search space and avoid
the costly subgraph isomorphism checking as much as pos-
sible. Thus, it is better to consider the structural feature as
well as the numeric feature.

Challenge 3: Reducing expensive storage cost. S-
ince there may be a mass of numeric features (e.g., the nu-
meric attributes) and structural features (e.g., path, tree,
and subgraph) especially when the knowledge graph G is
very large, we should carefully select these features to en-
hance the pruning power and organize them in an efficient
way so as to reduce the overall storage cost.

In order to tackle these challenges, we propose to partition
the data space into grids so that we can compute skyline grid
by grid instead of entity by entity. We also carefully devise a
hybrid encoding incorporating both structural and numeric
features at low storage cost. To achieve better pruning ef-
fectiveness, we discuss optimizations on how to adaptively
find a good partitioning strategy. Furthermore, we maintain
the grids using skylayer that facilitates the dynamic compu-
tation of skyline entities. More importantly, exploiting the
encoding and partitioning strategies we prune the unpromis-
ing grids that cannot generate the true results. Beyond that,
we also utilize skylayer index to guide the S3 query process-
ing. Thus, to a large extent the search space is reduced.

In summary, we make the following contributions.

• We propose the problem of subgraph skyline search
(denoted by S3) over large graphs, and gives an effi-
cient method to answer S3 queries.

• Partitioning the data space into grids, we compute sky-
line grid by grid instead of entity by entity. More im-
portantly, we discuss optimizations on how to adap-
tively find a good partitioning strategy and prove that
finding an optimal partition is NP-hard.

• We propose a hybrid feature encoding incorporating
both the structural and numeric features to enhance
the pruning ability. We also maintain grids using sky-
layer in order to facilitate the dynamic computation of
subgraph skyline.

• Extensive experiments over real dataset have demon-
strated the effectiveness and efficiency of our method.
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2. RELATED WORK
There are two related researches to be reviewed, i.e., sky-

line computation and subgraph search.
Skyline Computation. Most existing skyline literature

focus on multi-dimensional relational data. Their inputs are
relational tables. BNL [1] is the first proposed to compute
the skyline. Instead of going over the entire dataset, Bitmap
[16] represents a data point p using an m-bit vector, and
compute the skyline points progressively. In order to answer
subspace skyline queries, SUBSKY [18] converts each multi-
dimensional point to 1D values, and index these converted
values by a single B-tree. Jin et al. [8] group pairs that share
the same subspaces into maximal space index. In practice,
this method still suffers from expensive storage cost.

To compute the join-based skyline efficiently, several tech-
niques have been proposed [7, 21, 11]. Jin et al. [7] inte-
grate state-of-the-art join methods, such as sort-merge join
and nested loop join, with single-relation skyline algorith-
m. SFSJ (sort-first-skyline-join) [21] computes the skylines
by accessing only a subset of the input tuples. Instead of
performing tuple-to-tuple dominance checks, S2J (skyline-
sensitive join) [11] employs a layer/region pruning strategy.
There are some other works aiming to compute the join-
based skyline, such as FlexPref [10], SKIN [13], and Prefjoin
[9].

Notice that an important pruning principle of the exist-
ing algorithms is: tuples that do not belong to group sky-
lines [21] cannot contribute to the join skyline. However,
the group skyline is very hard to compute in the graph s-
cenario. Furthermore, not being devised for S3 problem,
they do not consider any structural feature to facilitate the
query process. In contrast, we integrate numeric pruning
with structural pruning based on the grid-based partition of
data space.

Subgraph Search. Subgraph search problem has been
extensively studied in the past decades [20, 4]. Ullmann
[20] and VF2 [4] are the two early efforts to verify the sub-
graph isomorphism between two graphs. In order to improve
the efficiency in subgraph search, most of the proposed al-
gorithms follow filtering-and-verification framework. In the
filtering phase, some structural features, including frequent
paths [19], trees [23], and subgraphs [3], are chosen as basic
index units. Also, some non-feature-based methods are pro-
posed, such as GCodeing [25] and SPath [24]. Most of them
employ the neighborhood structures of vertices. Based on
the indexes, we can first prune some data graphs that are
impossible to be results. Then, we verify each candidate da-
ta graph by employing the subgraph isomorphism algorithm,
such as Ulluman [20], VF2 [4], and QuickSI [14].

3. SUBGRAPH SKYLINE
In this section, we first formally define the subgraph sky-

line, and then give a naive method to solve S3 problem.

3.1 Subgraph Skyline
S3 runs queries over knowledge data graphs, which is for-

mally defined as follows.

Definition 1. (Knowledge Graph). A knowledge graph
is defined as G = (V,E,L), where each vertex v ∈ V rep-
resents an entity or a numeric value, each e = (vi, vj) ∈ E
represents a directed edge from vertex vi to vertex vj , and
L(v) (resp. L(e)) is the label of vertex v (resp. edge e).

Fig. 1 shows an example of knowledge graph. Note that,
if entity v has some numeric attributes, v is called numeric
entity. Let v.d denote the value on numeric attribute d for
entity v.

Definition 2. (Graph Isomorphism). Given two sub-
graphs g1 and g2 in graph G, g1 is graph isomorphic to g2
iff there exists a bijective function f(.) such that (1) for
each vertex v ∈ g1 (excluding the numeric values), f(v) ∈
g2 ∧ L(v) = L(f(v)); (2) for each e = (vi, vj) ∈ g1, we have
f(e) = (f(vi), f(vj)) ∈ g2, and L(e) = L(f(e)).

Definition 3. (Dominant/Equivalent Entity). Giv-
en two numeric entities v1 and v2 in a knowledge graph G
and their numeric attribute set D, v1 dominates v2, denoted
by v1 ≺ v2, if (1) for each attribute di, v1.di ≤ v2.di, and
(2) there exists at least one attribute dj such that v1.dj <
v2.dj . We say v1 is equivalent to v2, denoted by v1 = v2, if
v1.di = v2.di on each numeric attribute di ∈ D.

To facilitate the presentation, let v1 � v2 denote that
entity v1 dominates or is equivalent to entity v2.

Definition 4. (Subgraph Dominating Relationship).
Given two subgraphs g1 and g2 in G, g1 dominates g2 if

• g1 is graph isomorphic to g2 without considering nu-
meric values;

• It holds that vi � f(vi) for each numeric entity vi ∈ g1;

• There exists at least a numeric entity vj ∈ g1 such that
vj ≺ f(vj).

where f(.) is the mapping function defined in Def. 2.

Definition 5. (Subgraph Skyline). A subgraph g ∈ G
is in the subgraph skyline, if g is graph isomorphic to the
query graph q and not dominated by any other subgraphs
g′ ∈ G, on those specified numeric attributes in q.

Subgraph Skyline Search Problem (denoted as S3).
Given a large graph G and a query graph q containing nu-
meric attributes, the S3 problem is to compute the subgraph
skyline on G.

In real applications, the query graphs are given by users,
and the numeric attributes can be specified according to the
ad-hoc requirements.

3.2 A Naive Method
Before giving the naive method, we briefly review the

bitmap [16] method. Its main idea is representing an object
o using m-bit vector. Then we can progressively determine
whether o is in the skyline by performing bitwise operations
over the corresponding bitmaps.

High-level idea: In the offline phase, we store all the
bitmaps of numeric entities. In the online phase, we first
compute the candidates for the numeric entities in q, and
then find skyline entities from these numeric entities. Final-
ly, we verify the structure constraint to obtain S3 answers
employing bitmaps.

Obviously, this naive method is inefficient, since there is
no any guidance to find the skyline vertex. Furthermore, its
storage cost is O(n2 · |D|), where n and |D| are the num-
ber of numeric entities and numeric attributes, respectively.
Hence, we propose an efficient method exploiting hybrid fea-
ture encoding in the following section.
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4. HYBRID FEATURE ENCODING

4.1 Adaptive Space Partitioning
The rationale of partitioning the data space (i.e., the space

consisting of numeric entities) is that: if we can compute the
skyline entities grid by grid instead of exhausting them one
by one, the time efficiency will improve a lot. Moreover,
we can only maintain the numeric encoding of grids rather
than all numeric entities, which reduces the storage cost
considerably. Thus, we propose to partition the data space
into grids (Def. 6) in this paper.

Definition 6. (Grid). Given a data space D consisting
of the numeric entities, grids are obtained by partitioning
each dimension di ∈ D using hyperplanes.

After partitioning the data space into grids, each grid can
be represented by its minimal corner (given in Def. 7).

Definition 7. (Minimal Corner). Given a grid B in
the multi-dimensional data space D = {d1, . . . , d|D|}, its
minimal corner is the point whose value on each dimension
di ∈ D is the minimum.

d2

d1

Grid B2

Minimal Corner c2 v3 v5

v4
v6

Minimal Corner c1

Grid B1 v1
v2

Figure 4: A partition of the data space.

Example 1. As shown in Fig. 4, the 2-dimensional space
is partitioned into 12 grids. Each grid can be represented by
its minimal corner (i.e., the bottom left point of the grid).
For instance, the grid B2 consisting of entities v3, v4, v5,
and v6 can be represented by point c2.

Utilizing the minimal corners, we can compute the sky-
line entities grid by grid instead of point by point. Before
presenting the technical details, we introduce the definition
of “strict dominance” relationship.

Definition 8. (Strict Dominance). Given two corners
c1 and c2 and a specified numeric attribute set D, we say
c1 strictly dominates c2, denoted as c1 < c2, if on each
numerical attribute di ∈ D , c1.di < c2.di holds.

The strict dominance imposes more stringent restrictions
upon two objects. Clearly, if c1 < c2, it holds that c1 ≺ c2.
Moreover, we can derive the following properties.

Lemma 1. Given a grid B and its minimal corner c, it
holds that c dominates each numeric entity v ∈ B.

Proof. It is straightforward according to the definition
of minimal corner (Def. 7).

Lemma 2. Given two minimal corners, c1 of grid B1

and c2 of grid B2, if c1 < c2, then all the entities in B1

dominate the minimal corner c2.

Proof. This lemma can be proved by using the contra-
diction. Assume that v1 ⊀ c2, where v1 ∈ B1. Thus, there
must exist a dimension di such that v1.di > c2.di, which
contradicts with the prescriptive regular partition (i.e., par-
tition each dimension respectively).

With the two lemmas above, we can obtain a useful the-
orem, which is the critical principle of pruning.

Theorem 1. Given two minimal corners, c1 of grid B1

and c2 of grid B2, if c1 < c2, then all the entities in the grid
B1 dominate that in B2.

Proof. Assume v1 and v2 are two entities in grids B1

and B2, respectively. According to Lemmas 1 and 2, we
have v1 ≺ c2 and c2 ≺ v2. Thus, it holds that v1 ≺ v2.

It is obvious that given the number of grids, there are
many different partitions which may result in different ef-
fects. We will discuss optimizations on how to adaptively
find a good partitioning strategy later in Section 4.3.

4.2 Space Partition Based Feature Encoding
Based on the space partition, we present the hybrid fea-

ture encoding which consists of structural features (Section
4.2.1) and numeric features (Section 4.2.2).

4.2.1 Structural Feature Encoding
Structural encoding for entities. Provided that the

entities in q and G are encoded in the same method, we can
check the match according to their encodings.

Local Structural Encoding. Since bit operation (e.g., AND,
OR, and NOT) is easy and time efficient, we hash the local
structure of an entity v to a bitstring, denoted by lbStr(v),
which is similar to but different from the previous work [26].
The differences are listed as follows.

• We integrate the adjacent edge and the corresponding
neighbor vertex together (denoted by 1-hop path) in-
stead of considering them separately. In this way, it re-
duces false drops compared with the previous method.

• We utilize more structural information, i.e., connecting
edge (Def. 9), to improve the pruning ability.

Definition 9. (Connecting Edge). Given a vertex v1
and its two neighbor vertices v2 and v3, the edge e = (v2, v3)
between v2 and v3 is v1’s connecting edge.

The bitstring of v’s local structure lbStr(v) has two parts:
lbStr(v).p and lbStr(v).c, where the first part lbStr(v).p de-
notes the 1-hop path labels (v’s adjacent edge label combin-
ing the corresponding neighbor vertex label), and the second
part lbStr(v).c denotes the connecting edge labels.

Bitstring Generation. Given a neighbor vertex v′ of v and

the corresponding edge e between v and v′, we combine
e.Label and v′.Label together to get the label (p.Label) of
v’s 1-hop path. We generate the bitstring for p.Label, i.e.,
lbStr(v).p (|lbStr(v).p| = M1). We utilize m different hash
functions to set m out of M1 bits in lbStr(v).p to be ‘1’. All
the other bits are set to be ‘0’. Similarly, we can obtain the
other part lbStr(v).c.

Example 2. Fig. 5(a) shows the local structure of entity
v (Tom Hanks). It has 4 adjacent edges and 2 connecting
edges. As shown in Fig. 5(b), lbStr(v) consists of lbStr(v).p
and lbStr(v).c, which are the unions of the bitstrings for v’
1-hop paths and connecting edges, respectively.
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Figure 5: The local structure of v and its encoding

Global Structural Encoding. Given a numeric entity v in
graph G, we collect the set of numeric entities NSh(v), such
that dist(v, v′) ≤ h for each v′ ∈ NSh(v), where dist(v, v′)
is the shortest path distance between v and v′.

We first generate the bitstring for vi.Id (vi ∈ NSh(v)),
denoted as bStr(vi) (|bStr(vi)| = M3). Then, we utilize m
different hash functions to set m out of M3 bits in bStr(vi)
to be ‘1’. All other bits are to be ‘0’. Then gbStr(v) is gener-
ated by performing bitwise OR operation over the bitstrings
of vi ∈ NSh(v), i.e., gbStr(v) = bStr(v1)| . . . |bStr(vm).

1000 0000 0010 0100bStr(v2)

0100 0010 0010 0000
1101 1110 1010 1101

bStr(v5) 0001 0100 0000 1000

0000 1000 1000 0001

ORbStr(v6)
bStr(v8)

v2

v5

v6

v8
gbStr(v1)

Figure 6: The global numeric encoding of entity v1

Example 3. Provided that NS3(v1) = {v2, v5, v6, v8}, as
shown in Fig. 6, we generate the bitstring for each entity in
NS3(v1), and then perform the OR bitwise operation over
these bitstrings to obtain gbStr(v1).

Structural encoding for grids. The intuition for en-
coding grids lies in that we can check the minimal corner of a
grid B before accessing the entities in B. If a minimal corner
cannot match any entity in the query graph, we can safely
prune the whole grid without exploring the corresponding
entities.

The structural encoding for a grid B, i.e., lbStr(B), is
formed by performing the bitwise OR operation over the
local structural bitstrings of the entities in B. Formally,
lbStr(B) = lbStr(v1)| . . . |lbStr(vm), where vi ∈ B (1 ≤ i ≤
m). Then we have the following theorem.

Theorem 2. If lbStr(u) & lbStr(B) �= lbStr(u), any nu-
meric entity in grid B does not match u, where u is a nu-
meric entity in query graph q.

Proof. It is straightforward according to definition of
lbStr(B).

Based on Theorem 2, we first examine the structural en-
coding of a grid B before exploring the entities in B. For
a query entity u in q, if lbStr(u)&lbStr(B) �= lbStr(u) we
can determine that all the entities in grid B do not match
u. Thus, the whole grid B is filtered out.

4.2.2 Numeric Feature Encoding
The previous method Bitmap [16] can progressively de-

termine whether a point is in the skyline. However, as dis-
cussed earlier, it is costly to maintain the Bitmap in terms
of storage cost.

The numeric encoding nbStr(B) in this paper is distinct
from Bitmap [16]:

• The size of nbStr(B) is smaller than Bitmap, i.e., K ·
|D| < n · |D|, where K, n, and |D| are the number of
grids, numeric entities and attributes, respectively.

• The encoding technique of nbStr(B) is simpler than
Bitmap.

• The usage of our numeric encoding is different from
Bitmap. We propose an invalid vector to support the
computation of valid skyline objects (Def. 13).

We maintain a bitstring for each grid B, i.e., nbStr(B),
which consists of |D| parts: nbStr(B).d1, . . . , nbStr(B).d|D|.
Take an example, we generate the numeric encoding for

grid B on dimension di, i.e., nbStr(B).di (|nbStr(B).di| =
K), where K is the number of grids. For each grid Bj if Bj ’s
value on dimension di is better than B’s value on dimension
di, i.e., Bj .di < B.di, the jth bit of nbStr(B).di is set to 1,
otherwise it is set to 0.

grid Id: 101 2 3 4 5 6 7 8 9 11 12

01 1 1 0 0 0 0 0 0 0 0nbStr(B5).d1

00 0 1 0 0 1 0 0 1 0 1nbStr(B5).d2

Figure 7: The numeric encoding of B5

Example 4. Consider the partition in Fig. 4. The nu-
meric encoding of grid B5 is shown in Fig. 7.

Obtaining the numeric encoding for grid B, we can deter-
mine whether B is in the skyline on dimensions d1, . . . , dm
(m ≤ |D|). Let X = nbStr(B).d1 & . . . & nbStr(B).dm,
where ‘&’ represents the bitwise AND operation. If the re-
sult of the operation, X, is a non-zero value, we can conclude
that there must be a certain grid strictly dominates B.

As defined in S3 problem, a true answer should satisfy
both the skyline and structural constraints. Thus, even if
the numeric entities are in the skyline, the corresponding
subgraph is not a true answer on condition that the struc-
tural constraint is not satisfied. In this case, entities that
are not in the skyline originally may become skyline enti-
ties without considering their dominating entities. Hence,
we utilize an invalid skyline vector, ISB, to support the
dynamic skyline queries. More details will be discussed in
Section 5.2.1.

4.3 Optimization on Space Partitioning
As presented in Section 4.1, different partitions may result

in different pruning effects. In this subsection, we discuss
what a good partition is and how to partition the data space
efficiently.

4.3.1 What is a Good Partition?
Obtaining the minimal corners in the skyline, we need to

check whether all the entities in the corresponding grids are
valid skyline entities (Def. 13). Thus, the less false positives
are generated, the better the partition will be.

Observation 1: A good partition should generate less
false positives.

To make it clear, we introduce“dominating edge”between
two entities in the data space.
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Definition 10. (Dominating Edge). Given two enti-
ties v1 and v2 in the data space, if v1 dominates v2, a directed
edge starting from v1 to v2 is added. This directed edge is
called a dominating edge, denoted as e(v1, v2).

Example 5. As shown in Fig. 8(a),entity v1 dominates
entity v3, there is a directed edge between v1 and v3. Simi-
larly, we can obtain other dominating edges.

Fig. 8 shows two different partitions for a data space.
Although both these two partitions destroy 10 dominating
relations, the partition in Fig. 8(b) is better than that in
Fig. 8(a), because the grid consisting of v1 and v2 only
prunes one entity (i.e., v6) in Fig. 8(a). In contrast, the
grid consisting of v1 and v2 in Fig. 8(b) can prune three
entities, i.e., v4, v6, and v7.
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v6
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line2
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line3

(b)more common destructions

Figure 8: Two partitions for a data space.

Therefore, we find that in order to prune an entity v, all
the incoming dominating edges of v should be destroyed on
every attribute. Thus, we have the following observation.

Observation 2: An effective partition should destroy as
many common dominating edges as possible.

For instance, the partition lines in Fig. 8(a) destroy 2 dom-
inating edges in common. The partition lines in Fig. 8(b)
destroy 6 dominating edges in common. Therefore the latter
partition has stronger pruning power than the former one.

In real applications, we can determine the number of grids
based on the storage cost. For simplicity, we assume that the
number of partition lines on each dimension is given in this
discussion. According to the aforementioned observations,
we define the “maximum common partition” below.

Definition 11. (Maximum Common Partition) (de-
noted as MCP). Given the number of partition lines on
each dimension and a partition P , the number of dominat-
ing edges destroyed on all dimensions is denoted as |P |. If
there exist no other partition P ′ such that |P | < |P ′|, par-
tition P is the maximum common partition.

Given a set of data, it is better to find the maximum
common partition to obtain the strongest pruning power.
However, we have proven that it is an NP-hard problem.

Theorem 3. Given a set of data, computing the maxi-
mum common partition is NP-hard.

Proof. (Proof sketch). We can reduce the minimum
set cover problem to an instance of MCP. Provided that
D = {d1, d2}, the number of partition lines on d2 dimension
is 1. We construct a dataset in which all dominating edges
are destroyed on dimension d2. Then any destroyed dom-
inating edges on dimension d1 are the common destroyed
dominating edges on both dimensions d1 and d2.

Thus, we only focus on d1. Assume that there are K
partition lines on dimension d1. It is obvious that any given
minimum set cover instance can be reduced to an instance
of MCP. The theorem can be reached.

4.3.2 How to Partition
Since computing the maximum common partition is NP-

hard, we design an efficient greedy algorithm with the time
complexity O(n · k · |D|), where k is the average number of
partition lines on each dimension.

Assume that there are n numeric entities (v1, . . . vn),
and v1.di ≤ v2.di ≤ . . . ≤ vn.di. The projections of all
dominating edges on dimension di form a universe set E. A
partition line located between vj .di and vj+1.di may destroy
a number of dominating edges. These destroyed dominating
edges form a subset of E. Thus, computing the MCP on
dimension di corresponds to selecting a predefined number
of subsets that cover as many elements as possible.

Example 6. Considering Fig. 8(a), there are 6 option-
al partition lines (k1, . . . , k6). The partition line k1 located
between v1.d1 and v3.d1 destroys 4 dominating edges, i.e.,
e(v1, v3), e(v1, v6), e(v1, v7), and e(v1, v4). Hence, the cor-
responding subset is E1 = {e(v1, v3), e(v1, v6), e(v1, v7), and
e(v1, v4)}. Similarly, we can also obtain the other 5 subsets.

The main idea is that we greedily select ki sets on dimen-
sion di, and store the union of these selected sets, denoted
as U . When considering the next dimension dj , we greedily
select kj sets whose intersections with U is the largest, and
update set U . The intuition is that: Since it requires de-
stroying more common edges (edges that are destroyed on
all dimensions), we should intersect the selection union on
dimension d with the current selected sets U . More details
are presented in Alg. 1.

Specifically, the algorithm consists of three steps.

• We obtain the family of dominating edge sets on each
dimension di, denoted by Fi (lines 1-2).

• We select a dimension di to start. The current largest
set E ∈ Fi is selected. Then remove all elements e ∈ E
from the remaining sets, and select the new largest
set from the updated sets in next loop. The selection
process terminates until k1 sets have been selected.
The union of these selected sets is denoted as U (lines
3-9).

• Consider the next dimension dj . Select the set E ∈ Fj

such that the intersection of E and U (i.e., |E ∩U |) is
the largest (line 13). Then remove all elements e ∈ E
from the remaining sets (lines 14-15). The selection
process terminates until ki sets have been selected. Use
the intersection of selected sets R and U , i.e., U ∩R to
update U . The algorithm stops when all dimensions
have been considered (lines 10-18).

Time complexity. Assume there are n distinct numeric
entities. The number of different partition lines on a dimen-
sion is (n − 1) at most. For each partition line, it is triv-
ial to obtain the corresponding destroyed dominating edges.
Hence, the time complexity of the first step is O(n · |D|). In
the second step, the time complexity of selecting the largest
sets is O(n). Thus, the time complexity of selecting k sets
is O(n · k). Similarly, the time complexity of computing on
each dimension is O(n · k). Therefore, the time complexity
of Alg. 1 is O(n · k · |D|).
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Algorithm 1 Greedy Partition

Input: A set of numeric entities; Dimensions D = {d1, . . .
d|D|}; The number of partition lines on each dimension
k1, . . ., k|D|;

Output: A partition of the data space.
1: for Each dimension di ∈ D do
2: Compute the family of dominating edge sets Fi

3: U ← ∅ , s← 0
4: while s < k1 do
5: Select the largest set E ∈ F1

6: for Each Ej ∈ F1 do
7: Remove all the elements e ∈ E from Ej

8: U ← U ∪Ej , s← s+ 1
9: Remove Ej from F1

10: for Each dimension di ∈ D ∧ i �= 1 do
11: s← 0, R← ∅
12: while s < ki do
13: Select the set E ∈ Fi ∧E ∩ U is the largest
14: for Each Ej ∈ Fi do
15: Remove all the elements e ∈ E from Ej

16: R← R ∪Ej , s← s+ 1
17: Remove Ej from Fi

18: U ← U ∩R

5. GRID INDEX AND SUBGRAPH SKYLINE
QUERY

In this section, we present the index designed for grids
first, and then give the query processing of subgraph skyline
based on the feature encoding and grid index.

5.1 Grid Index - Skylayer
To answer S3 queries efficiently, a critical task is to obtain

the skyline entities dynamically before checking the expen-
sive subgraph isomorphism.

Since we partition the numeric dataset to grids and use
grids to represent the entities, the computation of skyline
entities is conducted over these grids. In general, we need
to exhaust these grids to obtain the skyline. Next, we pro-
pose skylayer to avoid traversing all the grids at the time of
computing skyline.

d2

d1

v3 v5

v4

v6

L1

v1

v2

L2 L3 L4

Figure 9: An example of skylayer.

Definition 12. (Skylayer). Given a set of minimal cor-
ners, we organize the corresponding grids in the several lay-
ers such that every minimal corner ci does not strictly dom-
inate any other minimal corner cj in the same layer.

Example 7. Fig. 9 shows a skylayer example of the dataset
in Fig. 4. There are four layers: L1 ∼ L4, where Li main-
tains the grids that do not strictly dominate each other.

Given the set of minimal corners, C, its skylayer is easy
to be built by recursively employing any existing skyline

algorithms [1, 18, 15]. Specifically, we compute the skyline
grids over C to obtain the first layer L1. Then we remove
these grids (in L1) from C to obtain a new set C′, i.e., C′ =
C − L1. Recursively, we can compute the new skyline grids
over C′ to get Li (i > 1) until C′ = ∅.

Lemma 3. Each grid B1 in the ith (i > 1) layer must
has at least one grid B2 in the (i− 1)th layer such that B2

strictly dominates B1, i.e., B2 < B1

Proof. It can be proved by contradiction. Assume that
one grid B in ith layer has no dominating grids in the (i−
1)th layer. Thus, grid B should have been discovered in the
(i− 1)th layer, which contradicts the assumption.

Given a numeric entity v and the grid B that v belongs
to, if v is in the skyline, the minimal corner c of B must be
in the first skylayer. Similarly, we have the following lemma.

Lemma 4. Any entity v in the layer Lj does not domi-
nate any entity v′ in the layer Li, where i < j.

Proof. It is straightforward according to Def. 12 and
Lemma 3.

Lemma 4 guarantees that accessing the skylayers one by
one will not miss any skyline entities.

Obtaining a skyline grid B, we need to compute the sky-
line entities in B. Notice that, some numeric entities in the
query may only involve only a part of the dimensions, i.e., it
is a subspace query. Here, we employ the bitmap technique
[16] to determine whether entity v (v ∈ B) is in the skyline.

Different from the work in [16], we generate the bitmaps
online instead of maintaining all the bitmaps with expen-
sive storage cost. Moreover, it is probable that not all the
entities need to be examined, that is, it may only involve a
subset of the entities. Hence, it is unnecessary to generate
bitmaps for all the entities. In the offline phase, entities are
sorted on each dimension, based on which the bitmap gener-
ation is very simple (the generation is similar to the numeric
encoding for grids in Section 4.2.2).

5.2 Subgraph Skyline Query
In this section, we give the query algorithm based on fea-

ture encoding and grid index aforementioned. Since a query
graph may contain one or multiple numeric entities, we deal
with these two cases in the following discussion.

5.2.1 Single Numeric Entity Query
Since we have partitioned the numeric dataset to grid-

s, and utilize skylayers to maintain these grids, the query
process starts from the skylayers.

Intuitively, it is the simplest case that there is only one
numeric entity in query graph q. Alg. 2 presents the details,
which has three steps: high-level pruning, skyline computa-
tion, and structure verification.

High-level Pruning. Given a query graph q which con-
tains one numeric entity u, we generate the local structural
encoding for each vertex in q. Then the high-level pruning
(structural pruning and numeric pruning) is performed.

Structural Pruning. Specifically, we first generate the local
structural encoding of u is lbStr(u). For each grid B in
skylayer L, we check whether u can match B. Based on
Thm. 2, if lbStr(u)&lbStr(B) �= lbStr(u), we can conclude
that any numeric entity in grid B can not match u.
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Algorithm 2 Single Numeric Entity Query

Input: A knowledge graph G, the feature encoding for
grids and entities of G, and a query graph q containing
one numeric entity;

Output: The subgraph skyline in G.
1: for Each skylayer L do
2: for Each grid B in L do
3: perform structural pruning over B
4: perform numeric pruning over B
5: if B is a valid skyline grid then
6: for Each entity v in B do
7: perform structural pruning over v
8: perform numeric pruning over v
9: if v is a valid skyline entity then
10: perform structure verification
11: if a graph g containing v is isomorphic to q

then
12: report g as a result
13: pruning entities and grids

Numeric Pruning. If grid B matches u in terms of the
structure constraint, we need to check whether grid B is in
the valid skyline (Def. 13) over the query space.

Definition 13. (Valid Skyline.) An entity v (or grid
B) is in the valid skyline iff v ( or B) satisfies the structural
constraint specified in query graph q, and all the entities
dominating v (or B) do not satisfy the structural constraint.

For instance, assume that grid B1 dominates B2, whereas
B1 does not satisfy the structure constraint, and there exist
no other grids dominating B2. Thus, B2 is in the valid
skyline. Conversely, grid B1 is an invalid skyline grid.

In order to determine whether grid B is in the valid sky-
line, we utilize a vector, ISB (|ISB| = K), to record the
invalid skyline grids. At the beginning, each bit of ISB
is set to be 1. When we find an invalid grid, the corre-
sponding bit is set to be 0. If ISB & X = 0, grid B
is a candidate in the valid skyline at the moment, where
X = nbStr(B).d1& . . .&nbStr(B).dm. Otherwise, B is not
in the valid skyline, which indicates that grid B is not need
to be explored further.

Skyline Computation. For a valid skyline grid B, we
need to compute the valid skyline entities in B. Similar to
the computation of grids, we conduct the structural pruning
and numeric pruning to filter out the unpromising entities
as early as possible.

Structural Pruning. Given a numeric entity v in grid B
and the numeric entity u in query graph q, according to the
discussion in Section 4.2.1, if lbStr(u)&lbStr(v) �= lbStr(u),
we can conclude that v does not match u.

Numeric Pruning. If entity v passes the structural prun-
ing, we should determine whether v is a valid skyline entity.
As discussed in Section 5.1, we only maintain the sorted
entities on each dimension, based on which the bitmaps,
nbStr(v), can be generated easily.

Analogous to that of grids, we maintain a vector whose
all bits are 1, ISV (|ISV | = n), to record the invalid skyline
entities. Once we find that a skyline entity is invalid due to
the structure constraint, the corresponding bit is set to be
0. If ISV&Y = 0, entity v is in a valid skyline entity candi-
date at present, where Y = nbStr(v).d1& . . .&nbStr(v).dm.
Otherwise, v is not in the valid skyline.

Structure Verification. Passing the first two pruning
techniques, it requires to verify whether there exists a sub-
graph containing v that is graph isomorphic to query graph
q. The state-of-the-art algorithms such as Ullmann [20] and
VF2 [4] can be employed to achieve this verification.

Supposing that we find a subgraph containing v that sat-
isfies both the skyline and structural constraints, we can
prune all the entities that are dominated by v. Specifically,
the entities in B that are dominated by v and the grids that
are strictly dominated by B can be filtered out safely, where
entity v belongs to grid B.

It is easy to obtain the grids that are dominated by B
based on the numeric encoding of B. Regarding dimension
di, we reverse each bit of nbStr(B).di, and set the bit corre-
sponding to grid Bj to be 1 if Bj .di = B.di. Then we acquire
the new encoding nbStr(B)′.di. Let Z = nbStr(B)′.d1 & . . .
& nbStr(B)′.dm. The grids corresponding to non-zero bits
in Z are dominated by B. Thus, these numeric entities in
these grids can be filtered out.

5.2.2 Multiple Numeric Entity Query
In general, there may be multiple numeric entities in query

graph q. To handle this case, we propose joint pruning in
this subsection. For ease of presentation, we assume that
there are two numeric entities u1 and u2 in query graph
q. The main idea is that: we select one numeric entity u1

to match and then we compute the candidates for entity
u2 before verifying the structure starting from v1, where
numeric entity v1 (v1 ∈ G) is a candidate for u1.

In order to find the candidate for u1, we perform structural
and numeric pruning which are analogous to that discussed
for one single numeric entity as shown in Section 5.2.1.

Obtaining the candidate v1 for u1, we need to compute the
candidates for u2. Besides the high-level pruning and skyline
computation, we also propose two joint pruning techniques:
shortest-path-distance pruning and skyline join pruning.

Shortest-path-distance Pruning. Provided that the short-
est path distance between u1 and u2, dist(u1, u2), is no
larger than h, where h is a predefined threshold based on
which the global structural encoding is generated. Entity
v2 matches u2 only if v2 ∈ NSh(v1). It is easy to deter-
mine whether v2 is in NSh(v1) using the global structural
encoding of v1, gbStr(v1).

If gbStr(v1)&bStr(v2) �= bStr(v2), we can conclude that
the candidate pair (v1, v2) does not match (u1, u2), where
bStr(v1) is the bitstring of v2.Id. Since it avoids the costly
graph isomorphism checking, the query efficiency may im-
prove a lot.

Skyline Join Pruning. The graph isomorphism algorithm
should be invoked to verify these entity pairs that pass all
the pruning techniques above. If there exists a subgraph g
containing entity pair v1 and v2 such that g is graph isomor-
phic to query graph q, g is in the subgraph skyline. Hence,
we prune all the subgraphs that are dominated by graph g.

Actually, instead of enumerating all these pruned sub-
graphs, we just need to filter out the entity pairs in dom(v1)
and dom(v2), where dom(v1) and dom(v2) represents the
entities dominated by v1 and v2, respectively. Notice that,
since we utilize grids to store entities, the join space is rela-
tively small compared with joining entities directly.

In order to deal with more than two numeric entities, we
can take them into consideration one by one. We omit more
details due to the space limitation.
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6. EXPERIMENTAL STUDY
In this section, we study our proposed method through

extensive experiments. Section 6.1 introduces the experi-
ment setting, followed by the effectiveness evaluation and
efficiency evaluation in Sections 6.2 and 6.3, respectively.

6.1 Experiment Setup
We use Freebase dataset1 which integrates NBA2 andIMDB3

to evaluate our method. It contains 12,130,534 vertices,
232,671,328 edges, 7,634,315 numeric entities, and 35 nu-
meric attributes.

Regarding the queries, we generate some query graphs to
study the effectiveness of our method. More examples will
be present in Section 6.2. In order to study the efficiency, we
randomly extract some subgraphs containing numeric enti-
ties, and vary the size of these query graphs.

All the experiments were conducted on a PC with 2.9GHz
CPU and 16GB main memory running Linux operating sys-
tem. For comparison, we implement the simple method p-
resented in Section 3.2, denoted as “Naive”, which does not
employ partition and feature encoding techniques. The par-
tition and encoding based method is denoted as “parCode”.
Both the two programs were implemented in C++.

6.2 Effectiveness Evaluation
In order to verify the effectiveness of our method, we focus

on the case studies of S3 queries in this subsection, and check
whether the results returned by our method are reasonable.
To this end, we artificially generate some queries. Here, we
present two case studies as follows.

Golden Basketball Partner Finding. As mentioned in Sec-
tion 1, assume that we want to find one guard and one for-
ward who play in the same team. The guard is expected
to be excellent in techniques “assists” and “steals”. The for-
ward is expected to be excellent in techniques “rebounds”
and “blocks”. The query graph is shown in Fig. 2. Fig. 10
presents a subset of the results. As expected, we find several
great partners, such as Gasol Pau and Bryant Kobe.
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Figure 10: Golden basketball partner finding.

Excellent Versatile Artist Finding. We want to seek Amer-
ican outstanding artist who is a singer and an actor/actress
as shown in Fig. 3. Specifically, the gross of the film that the
actor/actress starred in and the copies of his/her album are
expected to be large. Fig. 11 gives a fraction of the results.
For example, Michael Jackson is in the skyline.

6.3 Efficiency Evaluation
In this subsection, we evaluate the performance of our

proposed method and compare it with the naive method.

6.3.1 Offline Performance
Since we partition the data space into grids and utilize

the feature encoding techniques in offline phase, the storage
1http://www.freebase.com/
2http://databasebasketball.com.
3http://www.imdb.com/interfaces.
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Figure 11: Excellent versatile artist finding.

cost is acceptable. Tab. 1 shows the space cost and index
building time (T.time) of the two methods. It is obvious
that “Naive” consumes more space, since it encodes all the
numeric entities. In contrast, instead of encoding each enti-
ty, “parCode” just encodes the minimal corner of each grid.
What is more, the time consumed by“parCode” is much less
than that consumed by “Naive”.

Table 1: Offline Performance
Method Space (MB) T.time (s) P.time (s) E.time (s)
Naive 7,342,687 23,452 — —

parCode 873,852 5,011 3,934 1,077

In order to study “parCode” in depth, Tab. 1 also depicts
the time consumed by partition step (P.time) and encoding
step (E.time), respectively. It indicates that the main time
cost results from the partition process. Hence, a good and
efficient partition method is pretty important.

6.3.2 Online Performance
In this subsection, we adopt two metrics, i.e., the query

response time and pruning power, to evaluate the online
performance, where the pruning power is the ratio of candi-
dates that are filtered out, i.e., the number of pruned entities
divided by all candidates.

Evaluate the effect of K. K is the number of grids. We
fix the query size (the number of vertices) of q to be 8, and
vary the number of grids. Each query may contain one or
multiple numeric entities. Both the query response time and
pruning power are averaged results.

Figs. 12(a) and 12(b) investigate the query response time
of the two algorithms with respect to NBA and artist analy-
ses, respectively. It shows that when K is too small or large,
the response time increases. Extremely, if K = 1 or K = n,
it is equivalent to the case without any partition in actual.
According to this experiments, it indicates that K is better
to be about

√
n. Since the “Naive” method is independent

of the partition, its query response time is a horizontal line.
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Figure 12: Query response time vs. K.

Evaluate the effect of Nq . We fix the number of grids, and
vary the number of numeric entities, Nq, in q from 1 to 5.
As depicted in Fig. 13, “parCode” outperforms “Naive” in
terms of time efficiency. Moreover, the performance gap be-
tween“parCode” and“Naive”becomes larger when the num-
ber of numeric entities in q increases. The reason is that the
“Naive” method computes skyline entities in the manner of
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entity by entity. In comparison, “parCode” computes sky-
line entities in grid level and integrates numeric feature with
structural feature to produce much fewer candidates.
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Figure 13: Query response time vs. Nq.

In order to study the pruning power of “parCode”, we
evaluate the ratio of entities (or entity pairs) that are filtered
out by grid-level pruning (filterB) and entity-level pruning
(filterV ). As shown in Fig. 14, most of the candidates are
pruned without invoking subgraph isomorphism verification,
which contributes to the efficiency of our method.
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Figure 14: Pruning power vs. |V (q)|.
Evaluate the effect of |V (q)|. Fig. 15 presents the query

response time with respect to the number of vertices in query
graph q. As shown in Fig. 15, both the time efficiency of
“parCode” and “Naive” decrease with increasing |V (q)|. It
is obvious that if there are more vertices in q, the time con-
sumed by subgraph isomorphism checking will increase.
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Figure 15: Query response time vs. |V (q)|.

7. CONCLUSIONS
In this paper, we formalize the problem of subgraph sky-

line search (denoted as S3) over large graphs and propose
an algorithm to answer S3 queries. To improve the efficien-
cy, we propose to partition the data space into grids, based
on which we carefully design feature encoding to facilitate
the query process. The experimental results on real datasets
validate the effectiveness and efficiency of our method. As
future work, there are several issues to be addressed, such
as handling high dimensions, incremental updates, and the
effect of data distributions.
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