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ABSTRACT
Due to many real applications of graph databases, it has become
increasingly important to retrieve graphs g (in graph database D)
that approximately match with query graph q, rather than exact
subgraph matches. In this paper, we study the problem of graph
similarity search, which retrieves graphs that are similar to a giv-
en query graph under the constraint of the minimum edit distance.
Specifically, we derive a lower bound, branch-based bound, which
can greatly reduce the search space of the graph similarity search.
We also propose a tree index structure, namely b-tree, to facilitate
effective pruning and efficient query processing. Extensive experi-
ments confirm that our proposed approach outperforms the existing
approaches by orders of magnitude, in terms of both pruning power
and query response time.

Categories and Subject Descriptors
H.2.8 [Information Systems]: DATABASE MANAGEMENT—
Database applications

Keywords
Graph Edit Distance; Lower Bound; Graph Database

1. INTRODUCTION
Recently, graph data models have attracted increasing research

interests, because many data types in various applications can be
modeled as graphs, such as chemical compounds [2], social net-
works [16], road networks [1], and Semantic Web [20]. The grow-
ing popularity of graph data requires efficient graph data manage-
ment techniques. Among these, (sub)graph queries (i.e., given a
query graph q, finding all graphs g in a graph database D, such
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that q is (sub)graph isomorphic to g) have been extensively stud-
ied [5, 18].

However, the real-life graphs may have many noises, such as
protein-protein-interaction networks [10]. In this case, the exac-
t (sub)graph isomorphism may lead to empty results to the query.
Therefore, we need to design an robust solution to find graphs that
are of interest to users even in the presence of noises and errors
in the graph database. An interesting topic is to study graph sim-
ilarity search, which retrieves all graphs g (in graph database D)
that approximately match with q under some similarity measure
constraint. A number of graph similarity measures have been pro-
posed [4,8,13,17]. Among them, two classical measures (i.e., max-
imum common subgraphs (MCS) [4] and minimum edit distances
(MED) [17]) are proposed based on the classical graph theory. Note
that the two measures are inter-related [3]. In this paper, we focus
on the minimum edit distance (MED). As a widely used structural
similarity measure, MED is defined as the minimum operation cost
(addition, deletion, and substitution) of transforming one graph q to
another graph g (formally defined in Definition 2). Compared with
other similarity measures, MED is flexible because it can be used in
many applications, such as graph classification and graph cluster-
ing [11], objects recognizing in computer vision [7], and molecule
comparison in chemistry [9].

In this paper, we study the problem of graph similarity search
( defined later in Section 2) based on the minimum graph edit dis-
tance constraint. Since computing the minimum graph edit distance
is a NP-hard problem [17], all existing solutions adopt the filter-
and-refine framework to speed up query processing. So far, lots of
pruning rules have been proposed. Basically, they can be divided
into two categories: the global filter and the n-gram based filter.
The lower bounds of graph edit distance between a query graph q
and a data graph g are computed. Then, the data graphs whose low-
er bounds are larger than τ (τ is a user specified threshold) can be
filtered out safely.

1. global filter. There are two existing global filters. The first one
is to utilize the vertex/edge number difference as the lower bound
[17]. The second global filter considers the difference of vertex
labels and edge labels to further improve the pruning power [19].
Since these methods do not employ the graph structure, the lower
bounds are not tight enough for effective pruning.

2. n-gram based filter. The basic idea of these methods is to se-
lect some small structures as the n-grams. We can derive the lower
bound based on the common n-grams of the two graphs. Wang et
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al. [15] propose k-Adjacent Tree (k-AT) algorithm, which defines
a n-gram as a tree consisting of a vertex v and the paths starting
at v with length no longer than n. Apparently, a single edit op-
eration may affect many k-AT trees, especially when k is larger
than 2. The star structure used in [17] is exactly the same as k-
AT when k = 1. Specifically, the star-based lower bound in [17]

is distS(g1, g2) = μ(g1,g2)
max{4,[max{δ(g1),δ(g2)}]+1} , where μ(g1, g2)

is the mapping distance between g1 and g2 according to the bi-
partite graph, δ(g1) and δ(g2) are the maximum degree in g1 and
g2, respectively. If g1 or g2 has a high-degree vertex, the lower
bound will be very small. Similar to k-AT, Zhao et al. [19] compute
the lower bound by employing the path-based n-grams. However,
these path-based n-grams still share many overlapping structures,
if there are some high-degree vertices. Therefore, in such a case,
the lower bound of the path-based n-grams is not tight.

Generally speaking, the main problem of existing n-gram based
pruning methods is that the lower bounds may be not tight enough,
since existing n-grams have many overlaps and a single edit opera-
tion may affect many n-grams. Considering this limitation, we pro-
pose a novel method for edit-distance based graph similarity search
problem in this paper. We also propose an index structure to enable
effective pruning by the lower bound.

Our lower bound still follows the n-gram approach. However,
we use a different n-gram, namely branch, which is defined as a
structure consisting of one vertex and the edges incident to the ver-
tex1 (branch is formally defined in Section 3). The superiority of
branch lies in that a single edit operation can affect two branches
at most. Therefore, the branch-based lower bound is much tighter
than existing n-gram methods.

In order to avoid exhaustively checking all data graphs in D one
by one, we build an index structure over graphs in D, namely b-
tree, where all leaves are data graphs and all non-leaf nodes are
the information union of their child nodes. This index benefits the
search processing greatly.

To summary, in this paper, we make the following contributions.

• We propose to utilize the branch to derive a tight lower bound
of minimum graph edit distance.

• In order to reduce the search space, we design an index struc-
ture, namely b-tree (branch-based tree), to facilitate the query
processing.

• Extensive experiments over both real and synthetic graphs
confirm the effectiveness and efficiency of our proposed ap-
proaches.

2. BACKGROUND
In this section, we first formally define our problem in this sec-

tion, and then briefly review the existing solutions.

2.1 Problem Definition
For the ease of presentation, we consider simple graphs in this

paper. A simple graph is an undirected graph attributed that does
not contain self-loops or multi-edges, denoted by g. It can be rep-
resented by a 6-tuple g = (V,E, LV , LE ,ΣV ,ΣE), where V is a
set of vertices, E ⊆ V × V is a set of edges, ΣV and ΣE are the
label sets of V and E, respectively. LV and LE are label functions
that assign labels to vertices and edges, respectively.

Definition 1. (Subgraph Isomorphism, Graph Isomorphism). A
subgraph isomorphism from g1 to g2 is an injection function f :

1A branch edge does not include the other endpoint except for the
branch center.

V (g1) → V (g2) that satisfies 1) ∀ v ∈ V (g1), f(v) ∈ V (g2) ∧
LV (v) = LV (f(v)), and 2) ∀e(v1, v2) ∈ E(g1), e(f(v1), f(v2))
∈ E(g2)∧ LE(e(v1 , v2)) = LE(e(f(v1), f(v2))).

Let g1 � g2 denote that a graph g1 is subgraph isomorphic to
another graph g2. If g1 � g2 ∧ g2 � g1, g1 and g2 are graph
isomorphic to each other, denoted as g1 = g2.

There are six primitive edit operations on a graph g [17]: insert
an isolated vertex with label, delete an isolated vertex, substitute a
vertex label, insert an edge between two vertices, delete an edge,
and substitute an edge label. Given two graphs g1 and g2, there
exists a sequence of primitive edit operations to transform g1 to g2,
such as, g1 = g01 → g11 → ... → gk1 = g2. We may have different
operation sequences to transform g1 to g2. The minimum graph
edit distance (dissimilarity) between two graphs is measured by the
shortest operation sequence length, as defined as follows.

Definition 2. (Minimum Graph Edit Distance). Given two graph-
s g1 and g2, their minimum graph edit distance is defined as the
minimum number of primitive operations needed to transform g1
to g′1, s.t., g′1 = g2, denoted by ged(g1, g2).

Given the definition of minimum graph edit distance (or called
graph edit distance if there is no ambiguity in the context), we for-
malize the problem of this paper as follows.

Problem Statement
(Graph Similarity Search) Given a query graph q, a set of data

graphs D = {g1, g2, · · · , g|D|}, and a distance threshold τ , find all
graphs gi in D s.t. ged(q, gi) ≤ τ .
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Figure 1: Example of a query graph q and two data graphs g1 and g2.

Example 1 below is a graph similarity search running example
that is used throughout the paper.

EXAMPLE 1. Figure 1 shows a query graph q and two data
graphs g1 and g2. ged(q, g1) = 6, ged(q, g2) = 7. If the edit
distance threshold is τ = 3, neither g1 nor g2 is the answer, since
edit distances of both graphs are larger than 3.

Since most existing graph similarity search algorithms follow the
filter-and-verification framework, it is critical to efficiently estimate
the lower bound as tight as possible.

2.2 Existing Solutions

2.2.1 Global Filter
Number Count Filter [17]. The graph edit distance ged(q, g)

of two graphs g and q will not be smaller than distN (q, g) =
||V (g)| − |V (q)||+ ||E(g)| − |E(q)||.

Label Multiset Filter [19]. This lower bound is computed as
distM (q, g) = Γ(MV (q),MV (g)) + Γ(ME(q),ME(g)), where
Γ(X,Y ) = max(|X|, |Y |) − |X ∩ Y |, MV (g) and ME(g) are
the multisets of vertex and edge labels, respectively.
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2.2.2 n-gram based Filter
C-star. The star structure defined in [17] is a tree of a single

level rooted at a vertex. A bipartite graph can be constructed with
two star sets S(q) and S(g) of q and g, where each star in S(q)
and S(g) is a vertex, and star pair (si, sj) is an edge (si ∈ S(q),
sj ∈ S(g)) weighted with edit distance between si and sj . Assume
that the minimum weight matching in the bipartite graph is μ(q, g).
The star-based lower bound of edit distance between graphs q and
g can be computed according to Equation 1, where δ(q) and δ(g)
are the maximum degree in q and g respectively.

distS(q, g) =
μ(q, g)

max{4, [max{δ(q), δ(g)}] + 1} (1)

EXAMPLE 2. Consider the graphs q, g1, and g2 in Figure 1,
where τ = 3, μ(q, g1) = 14, μ(q, g2) = 16. We have distS(q, g1) =
14/6, and distS(q, g2) = 16/6. Since distS(q, g1) < τ and
distS(q, g2) < τ hold, neither g1 nor g2 is pruned by this filter.

Although star-based filter captures some structure information,
c-stars may have lots of overlapping structures, which results in a
huge penalty by max{4, [max {δ(q),δ(g)} + 1]}. Obviously, if
graph q or g has some large-degree vertices, the lower bound will be
very small caused by the large denominator. This problem motivate
us to find an effective filter (i.e., less overlapping structures). That
is the branch filter proposed in Section 3.

Tree-based n-grams (k-AT [15]). It defines a n-gram as a tree
consisting of a vertex v and the paths starting from v with length
no larger than n. Its main principle is based on the observation that
if ged(q, g) ≤ τ , graphs q and g must share at least

distT (q, g) = max(|V (q)| − τ ·Dt, |V (g)| − τ ·Dt(g)) (2)

common n-grams, where Dt is the maximum number of tree-based
n-grams that can be affected by an edit operation.

EXAMPLE 3. Consider q, g1, and g2 in Figure 1, where τ=1,
n=1. distT (q, g1) = 1, distT (q, g2)= 1. Actually, q has 1 and
0 common tree-based 1-gram with g1 and g2, respectively. Hence,
g2 can be pruned, whereas g1 will pass the filter. If τ ≥ 2, both
distT (q, g1) and distT (q, g2) will be smaller than 0. Thus, neither
g1 nor g2 can not be pruned.

Path-based n-grams [19]. It defines a n-gram as a path of
length n. If ged(q, g) ≤ τ , graphs q and g must share at least

distP (q, g)=max(|MG(q)|−τ ·Dp, |MG(g)|−τ ·Dp(g)) (3)

common n-grams, where MG(q) and MG(g) denote the multiset-
s of n-grams in graphs q and g, and Dp is the maximum number
of path-based n-grams that can be affected by one edit operation.
Clearly, if there is a high-degree vertex, there are many paths con-
taining the vertex. It also means that Dp is very large, which incurs
to low pruning power.

EXAMPLE 4. Consider q, g1 and g2 in Figure 1, τ = 1, and
n = 1. distP (q, g1) = 2, distP (q, g2) = 2. Actually, q has 4 and 2
common path-based 1-grams with g1 and g2, respectively. Hence,
both g1 and g2 can pass this filter. If τ ≥ 2, both distP (q, g1) and
distP (q, g2) will be smaller than 0. Thus, neither g1 nor g2 can be
pruned.

In order to improve the pruning power, we propose a novel filter,
namely the branch-based filter( Section 3).

3. BRANCH-BASED FILTER
As discussed in the previous section, the pruning abilities of

global filters and existing n-gram filters are limited. In order to ad-
dress these problems, we propose to use the “branch” as the n-gram.
It has two benefits. First, branch filters can provide the tighter lower
bound than existing ones. Second, by using the branch structures,
it is easy to devise an effective index to speed up the query process-
ing. Specifically, we present the branch filter in this section.

Definition 3. (Branch Structure) A branch structure b is a ver-
tex v and the multiset of edge labels incident to v, represented by
b(v) = (lv, ES), where lv = LV (v) is the label of the root vertex,
and ES = {LE(e)| edge e is adjacent to v } is the multiset of edge
labels adjacent to v.
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Figure 2: Branch structures of q and g1.

Figure 2 shows the branches of graphs q and g1 in Figure 1. D-
ifferent from stars in [17], a branch only considers edges adjacent
to the root vertex. Thus, one edit operation affects two branches at
most regardless of the degrees of the vertices. Therefore, the prun-
ing power of branch-based filter is much more stable than other
existing n-gram filters, since the pruning ability of existing lower
bounds depends on the maximum vertex degree in graphs. Ac-
cording to the definition of branches, we define the distance of two
branches as follows.

Definition 4. (Branch Distance) Given two vertices v1 and v2,
their branches are denoted as b1 = (l1, ES1) and b2 = (l2, ES2).
The branch distance between b1 and b2 is defined as follows:

bed(b1, b2) = T (l1, l2) +
Γ(ES1, ES2)

2

where
T (l1, l2) =

{
0, if l1 = l2,
1, otherwise.

Γ(ES1, ES2) = max{|ES1|, |ES2|} − |ES1 ∩ ES2|
Given two graphs q and g, we can enumerate all branch struc-

tures of q and g to obtain two sets, B(q) and B(g), respective-
ly. Thus, we can construct a bipartite graph like that in Figure 2,
where vertices represent branches and edges represent transforma-
tions between any two branches (from B(q) and B(g) respective-
ly) weighted with the their pairwise branch edit distance (defined
in Definitin 4).

Definition 5. Given two multisets of branches B(q) and B(g)
with the same cardinality (we can add some branches if |B(q)| �=
|B(g)|), and assume P :B(q) → B(g) is a bijection. The mapping
distance between B(q) and B(g) is
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λ(q, g) = min
P

∑
bi∈B(q)

bed(bi, P (bi)) (4)

Clearly, the bijection P in Equation 4 is the minimum weighted
match in the bipartite graph. Based on the distance between B(q)
and B(g) (i.e., λ(q, g)), we can obtain a lower bound of the edit
distance between q and g, as shown in the following theorem.

Theorem 1. Given two graphs q and g, their graph edit dis-
tance and the mapping distance between B(q) and B(g) satisfy the
inequality: ged(q, g) ≥ distB(q, g) = λ(q, g), where B(q) and
B(g) are the branch structure multisets of q and g respectively, the
branch structure-based lower bound is denoted as distB(q, g).

PROOF. Let P = (p1, p2, ..., pk) be an alignment transform-
ing q to g. Accordingly, there is sequence of graph q = q0 →
q1 → ... → qk = g, where qi → qi+1 indicates transforming
qi to qi+1 by operation pi. Assume that there are k1 edge inser-
tion/deletion/relabeling operations, k2 vertex insertion/deletion/re-
labeling operations in P , then k1 +k2 = ged(q, g).

1) Edge Insertion/Deletion/Relabeling: If an edge is inserted or
deleted or relabeled over the graph qi, only two branches are af-
fected. Thus we can know that λ(qi, qi+1) ≤ 2/2 = 1 in the case
of inserting or deleting or relabeling an edge over qi.

2) Vertex Insertion/Deletion/Relabeling: As discussed in [17], a
vertex can be deleted only on the condition that it is an isolated
vertex, and we can only insert an isolated vertex. If a vertex is
inserted or deleted over qi, λ(qi, qi+1) = 1. When the label of a
vertex v is relabeled, only the branch rooted at v is affected. Hence,
λ(qi, qi+1) is 1. Above all, we have the following inequality:

λ(q, g) ≤ 1 · k1 + 1 · k2 ≤ 1 · (k1 + k2) ≤ ged(q, g).

EXAMPLE 5. Consider graphs q, g1, and g2 in Figure 1. Ac-
cording to Theorem 1, distB(q, g1) = 4 and distB(q, g2) = 6, both
of which are larger than 3. Hence, g1 and g2 can be pruned out
safely when τ ≤ 3

As described in Example 5, graphs g1 and g2 can be pruned safe-
ly employing the branch-based filter. On the contrary, neither g1
nor g2 can be filtered out by exiting lower bounds.

4. INDEX AND QUERY PROCESSING
In this section, we first introduce the b-tree index, and then give

the query processing followed by the construction of b-tree.

4.1 b-Tree Index
Given a query q and a database D, we need to exhaustively check

the lower bound of ged(q, g) (i.e., branch filter distB(q, g)) for all
graphs g (∈ D) one by one. Obviously, this is a long and tedious
process, especially when |D| is very large. In order to avoid the
sequential scan, we propose an index b-tree (because it stores the
branches of each graph g ∈ D ) as follows. Generally, b-tree is a
height-balanced tree, analogue to B+-tree and R-tree.

Definition 6. A b-tree is a height-balanced tree, where

(1) Each leaf node stores B(g), the branch set of g, corresponding
to the graph g.

(2) Each intermediate node N is union of all its child nodes, i.e.,
B(N) = B(N1)∪B(N2)∪· · ·∪B(Nm), where N1, N2, · · · ,
Nm are the child nodes of N , “∪” is the union operation.

.

B(Nx)

B(N1) B(N2) B(Nm)

B(g1) B(g2) B(g3) B(g4) B(g5) B(g6)

Figure 3: b-tree Index.

Figure 3 shows an example of b-tree index structure. The con-
struction of b-tree is similar to B-tree and R-tree. We will discuss
b-tree construction in Section 4.3. Assuming that the b-tree has
been built, we focus on how to utilize b-tree to perform the query.

The general framework is as follows. Given a query graph q,
we traverse the b-tree starting from the root. Considering an inter-
mediate node Ni (in b-tree), we define the directed branch-based
distance (denoted as distDB(q,Ni)) between q and Ni in Theo-
rem 1. If this distance is larger than τ , all the descendants of Ni

can be pruned safely. The following definition and theorem show
the details of the above pruning strategy.

Definition 7. The directed branch-based distance from a query
graph q to an intermediate node Ni, denoted as distDB(q,Ni), is
the minimum edit distance of transforming B(q) into B(q)′, such
that B(q)′ ⊆ B(Ni).

To compute distDB(q,Ni), we only need to add |B(q)| blank
branches (dummy branches without any vertex and edges) into B(Ni),
and then construct a bipartite graph according to B(q) and B(Ni).
Finally, compute the minimum weighted match in the bipartite graph
using Hungarian algorithm [6].

Theorem 2. If the directed distance distDB(q,Ni)≥ (τ +1),
all the children nodes of Ni can be pruned.

PROOF. Since Ni is the union of its children nodes, the common
branches between q and Ni must be more than that between q and
Nj , where Nj is one child node of Ni .

4.2 Query Processing
In this subsection, we propose the query algorithms for graph

similarity search. Note that, we only focus on the filtering process,
i.e., finding candidates. Any graph edit distance algorithm (such
as [19]) can be used in the verification process.

Given a query graph q, we traverse the index b-tree starting from
the root. For an intermediate node Ni, we compute the directed
distance distDB(q,Ni). If distDB(q,Ni) ≥ (τ + 1), we can
safely prune the subtree rooted at node Ni. Otherwise, the subtree
will be accessed. Furthermore, if the current node is a leaf node g,
we need to compute the branch lower bound distB(q, g) between
q and g.

4.3 b-Tree Construction
Since b-tree is analogue to R-tree, we can build b-tree by in-

serting the graphs sequentially. An insertion operation begins at
the root and iteratively chooses a child node until it reaches a leaf
node. The given graph is inserted at this leaf node. The main chal-
lenge of insertion is the criterion for choosing a child node. We
define the similarity between a graph g and a node Ni as the di-
rected branch-based distance between B(q) and B(Ni) (defined in
Definition 7). We omit more details about the b-tree construction,
since it is similar to R-tree.
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Table 1: Dataset statistics
Dataset DBSize Avg |V| Avg |E| Avg |LV | Avg |LE | max d
AIDS 42,687 45.7 47.71 4.37 2.06 4

ER 100,000 64.86 157.07 9.39 43.53 7
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Figure 4: Offline Performance

5. EXPERIMENTS
In this section, we evaluate the performance of our proposed

method (denoted as simB), and compare with c-star [17], k-AT [15]
and path-gram [19] over both real and synthetic datasets.

5.1 Datasets and Setup
We use real and synthetic datasets in our experiment, described

as follows.
Real Dataset. AIDS is an antivirus screen compound dataset

from the Developmental Theroapeutics Program in NCI/NIH 2.
Synthetic Dataset. The synthetic graph model is used in our

experiments, namely, Erdos Renyi (denoted as ER). In ER model,
N vertices are connected by M randomly chosen edges.

The statistics of the datasets are listed in Table 1, where d is the
vertex degree. We randomly select 100 graphs from each dataset as
its query graphs, and average the query response time.

In this paper, all experiments are conducted on a P4 3.0GHz ma-
chine with 4G RAM running Linux. All programs were implement-
ed in C++. The length of grams in k-AT and path-gram are set to
be 1 and 3, which are the suggested parameter values in [19].

5.2 Evaluating Offline Performance
In this section, we evaluate the offline performance of our method.

Due to the space limitation, we only report the index size and index
construction time in AIDS dataset, as shown in Figure 4.

Since the depth of tree in is 1 for k-AT, it is just the star structures
defined in c-star. Because the size of branch is smaller than the size
of star, and we assign each branch an unique id to reduce the index
space, the space cost of simB is competitive in index size. How-
ever, simB needs to build the b-tree index as presented in Section
4. Hence, it is not the most time efficient among these apporaches.
Since c-star only needs to enumerate all the star structures in the
query graph and data graphs, it is superior to all the other methods
in terms of the index construction time.

5.3 Evaluating Online Performance

5.3.1 Candidate Ratio vs. τ

In order to evaluate the pruning ability of these approaches, we
propose a metric, namely candidate ratio (denoted as canRatio),
which is defined in Equation 5.

canRatio =
candidate size

|D| (5)

2http://dtp.nci.nih.govdocsaidsaids_data.html
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Figure 5: canRatio vs. τ in Graph Similarity Search

where |D| is the number of graphs in the database.
In this subsection, we fix the datasets and vary the threshold τ

from 1 to 10. Figure 5 presents the canRatios of different methods
in AIDS and ER(100k), where the y-axis represents the candidate
ratio generated by these methods.

According to the definition of canRatio, it is clear that the s-
maller the canRatio is, the higher the prune ability of filters is. As
shown in Figures 5(a) and 5(b), the candidate ratios generated by
all these methods increase with the increasing of τ . It is because
that larger threshold will produce more candidates. Note that, the
candidate ratio of our proposed method simB is the lowest, i.e., it
has the strongest prune power. Thus, it confirms that our method
is more effective compared with c-star [17], k-AT [15] and path-
gram [19].

5.3.2 Filtering Time vs. τ

In this subsection, we evaluate the query efficiency of these ap-
proaches. Since c-star needs to construct the bipartite graph be-
tween two sets of star structures and it does not employ any index
structure, it is the most inefficient compared other methods. On
the contrary, the branch distance is easy to compute. Moreover, we
carefully devise the b-tree index which benefits the query process-
ing. Hence, the query response time of our method simB is much
less than the other three filters by orders of magnitude as shown in
Figure 6.
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Figure 6: Running Time vs. τ in Graph Similarity Search

5.3.3 Filtering Time vs. |D|
We also study the scalability of simB together with other method-

s as shown in Figure 7. We fix the threshold τ to be 3, and vary the
the size of datasets. We randomly select some subsets from AID-
S(full) and ER(100K). As shown in Figure 7, the time consumed
by all these approaches are almost linear of the size of datasets, be-
cause the prune ability is stable in datasets of different size. What
is more, our method simB is faster than the other three filters by
orders of magnitude.
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Figure 7: Running Time vs. |D| in Graph Similarity Search

6. RELATED WORK
In many real world applications, various noisy and incomplete

data drive the research of approximate (sub)graph search. Hence,
performing an exact graph matching probably returns none match
or incorrect ones. It is crucial to find the approximate matches.
SAGA [12] proposes a distance model for computing graph simi-
larity, which permits node gaps, node mismatches, and graph struc-
tural differences. G-Ray [14] defines the similarity based on model
of random walk with restart. TALE [13] introduces the neighbor-
hood index (NH-Index), the size of which is linear in the number of
nodes in the database. Ness [8] proposes a graph similarity measure
based on neighborhood information, under this measure subgraph
similarity search is NP hard.

All above approaches define some “heuristic” distances to model
the similarity between two graphs. They do not discuss the rela-
tionships between the heuristic functions and some classical graph
similarity distances. In this paper, we focus on graph edit distance.
It is based on well-found graph theory. Recently, graph edit dis-
tance similarity (sub)graph search has attracted extensive attention-
s [15,17,19]. Since computing graph edit distance is also a NP-hard
problem, all existing methods also adopt the filter-and-verification
framework. Lots of lower bounds are proposed to perform the prun-
ing. We have reviewed these approaches in Section 2.2. The key
problem is that the pruning power of existing solutions depends on
the maximum vertex degree in graphs. Extensive experiments show
that our proposed lower bounds are much better than existing ones.

7. CONCLUSIONS
Considering the limitations of existing approaches, we present

a novel method for edit-distance based similarity graph similari-
ty search problem. An effective lower bound based on the branch
structures is first proposed. To facilitate the query processing, we
carefully devise a tree index, namely b-tree. Extensive experiments
over both real and synthetic datasets confirm that our proposed
method outperforms the existing approaches significantly.
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